Global Journal of Computer Science and Technology, D: Neural & Artificial Intelligence, Volume 22 Issue 1
work,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. 9. Y. Li et al, “No-reference image quality assessment with shearlet transform and deep neural networks,” Neurocomputing, vol 154, April 2015. 10. Xialei Liu, Joost Van de Weijer and Andrew D. Bagdanov, “RankIQA: Learning from Rankings for No-reference Image Quality Assessment,” IEEE International Conference on Computer Vision (ICCV), Dec 2017. 11. M. A. Saad, A. C. Bovik, and C. Charrier, “Blind image quality assessment: A natural scene statistics approach in the DCT domain,” IEEE Trans. Image Process., vol. 21, no. 8, pp. 3339–3352, Aug. 2012. 12. K. Ma, W. Liu, K. Zhang, Z. Duanmu, Z. Wang and W. Zuo, ”End-to-End Blind Image Quality Assess- ment Using Deep Neural Networks,” in IEEE Transactions on Image Processing, vol. 27, no. 3, pp. 1202-1213, March 2018. 13. Fei Gao, Yi Wang, Panpeng Li, Min Tan, Jun Yu, Yani Zhu, DeepSim: Deep similarity for image quality assessment, Neurocomputing, Volume 257, 2017. 14. X. Min, G. Zhai, K. Gu, Y. Liu and X. Yang, ”Blind Image Quality Estimation via Distortion Aggravation,” in IEEE Transactions on Broad- casting, vol. 64, no. 2, pp. 508-517, June 2018, doi: 10.1109/TBC.2018.2816783. 15. Hossein Talebi and Peyman Milanfar, ”NIMA: Neural Image Assessment,” IEEE Transactions on Image Processing, vol. 27, no. 8, pp. 3998- 4011, 2018. 16. W. Hou, X. Gao, D. Tao, and X. Li, “Blind image quality assessment via deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6, pp. 1275– 1286, Jun. 2015. 17. S. Bosse, D. Maniry, K. M u¨ller, T. Wiegand and W. Samek, ”Deep Neural Networks for No- Reference and Full-Reference Image Quality Assessment,” in IEEE Transactions on Image Processing, vol. 27, no. 1, pp. 206-219, Jan. 2018, doi: 10.1109/TIP.2017.2760518. 18. D. Hammou, S. A. Fezza and W. Hamidouche, ”EGB: Image Quality Assessment based on Ensemble of Gradient Boosting,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, pp. 541- 549, doi:10.1109/CVPRW53098.2021.00066. 19. L. Kang, P. Ye, Y. Li and D. Doermann, ”Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks,” 2015 IEEE International Conference on Image Processing (ICIP), 2015, pp. 2791-2795, doi: 10.1109/ICIP. 2015.7351311. 20. H.R. Sheikh, Z.Wang, L.Cormack and A.C. Bovik, ”LIVE Image Quality Assessment Database Release 2”, http://live.ece.utexas.edu/research/quality. 21. H.R. Sheikh, M.F. Sabir and A.C. Bovik,” A statistical evaluation of recent full reference image quality assessment algorithms”, IEEE Transactions on Image Processing, vol. 15, no. 11, pp. 3440- 3451, Nov. 2006. 22. Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, ”Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol.13, no.4, pp. 600-612, April 2004. 23. Dinesh Jayaraman, Anish Mittal, Anush K. Moorthy and Alan C. Bovik, Objective Quality Assessment of Multiply Distorted Images, Proceedings of Asilomar Conference on Signals, Systems and Computers, 2012. 24. http://www.ivl.disco.unimib.it/activities/imagequality/ 25. J. Kim, A. Nguyen and S. Lee, ”Deep CNN-Based Blind Image Quality Predictor,” in IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 1, pp. 11-24, Jan. 2019. © 2022 Global Journals Global Journal of Computer Science and Technology Volume XXII Issue I Version I 24 ( )D Deep CNN Model for Non-Screen Content and Screen Content Image Quality Assessment Year 2022
RkJQdWJsaXNoZXIy NTg4NDg=