Global Journal of Computer Science and Technology, D: Neural & Artificial Intelligence, Volume 22 Issue 1
15. G. Montavon, “Deep learning for spoken language identification,” in NIPS Workshop on deep learning for speech recognition and related applications, Whistler, BC, Canada, 2009, pp. 1–4. 16. R. A. Cole, J. W. Inouye, Y. K. Muthusamy, and M. Gopalakrishnan, “Language identification with neural networks: a feasibility study,” in Communications, Computers and Signal Processing, IEEE Pacific Rim Conference on. IEEE, 1989, pp. 525– 529. 17. Lopez-Moreno, J. Gonzalez-Dominguez, O. Plchot, D. Martinez, J. Gonzalez-Rodriguez, and P. Moreno, “Automatic language identification using deep neural networks,” in Acoustics, Speech and Signal Processing (ICASSP), IEEE International Conference on. Florence, Italy: IEEE, 2014, pp. 5337–5341. 18. Y. Zeng, H. Mao, D. Peng, and Z. Yi, ‘Spectrogram based multi-task audio classification’, Multimed Tools Appl , vol. 78, no. 3, pp. 3705–3722, Feb. 2019, doi: 10/gnkrrs 19. D. S. Park et al. , ‘SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition’, Interspeech 2019 , pp. 2613–2617, Sep. 2019, doi: 10/ghbzt4 20. Zhao, Huimin & Xianglin, Huang & Wei, Liu & Yang, Lifang. (2018). Environmental sound classification based on feature fusion. 21. B. McFee et al. , ‘librosa: Audio and Music Signal Analysis in Python’, Austin, Texas, 2015, pp. 18–24. doi: 10/gf4wxc. MATEC Web of Conferences. 173. 03059. 10.1051/matecconf/201817303059. Global Journal of Computer Science and Technology Volume XXII Issue I Version I 29 ( )D © 2022 Global Journals Acoustic Features based Accent Classification of Kashmiri Language using Deep Learning Year 2022
RkJQdWJsaXNoZXIy NTg4NDg=