Global Journal of Computer Science and Technology, D: Neural & Artificial Intelligence, Volume 23 Issue 2
© 2023 Global Journals Global Journal of Computer Science and Technology Volume XXIII Issue II Version I 52 ( ) Year 2023 D Traffic Flow Forecast based on Vehicle Count PEITS 2008 , pp. 621–625, 2008, doi: 10.1109/PEITS.2008.135. 31. A. Stathopoulos, L. Dimitriou, and T. Tsekeris, “Fuzzy Modeling Approach for Combined Forecasting of Urban Traffic Flow,” Computer-Aided Civil and Infrastructure Engineering , vol. 23, no. 7, pp. 521–535, Oct. 2008, doi: 10.1111/J.1467- 8667.2008.00558.X. 32. M. Dixit, R. Sharma, S. Shaikh, and K. Muley, “Internet traffic detection using naïve bayes and K- Nearest neighbors (KNN) algorithm,” 2019 International Conference on Intelligent Computing and Control Systems, ICCS 2019 , pp. 1153–1157, May2019, doi: 10.1109/ICCS45141.2019.9065655. 33. Y. Tu, S. Lin, J. Qiao, and B. Liu, “Deep traffic congestion prediction model based on road segment grouping,” Applied Intelligence 2021 51:11 , vol. 51, no. 11, pp. 8519–8541, Apr. 2021, doi: 10.1007/S10489-020-02152-X. 34. H. Nicholson and C. D. Swann, “The prediction of traffic flow volumes based on spectral analysis,” Transp Res , vol. 8, no. 6, pp. 533–538, 1974, doi: 10.1016 /0041-1647(74)90030-6. 35. Y. Zhang, Y. Yang, W. Zhou, H. Wang, and X. Ouyang, “Multi- city traffic flow forecasting via multi- task learning,” Applied Intelligence 2021 51:10 , vol. 51, no. 10, pp. 6895–6913, Feb. 2021, doi: 10.1007/S10489-020-02074-8. 36. “Congestion Pattern Prediction for a Busy Traffic Zone Based on the Hidden Markov Model | IEEE Journals & Magazine | IEEE Xplore.” https://ieeex plore.ieee.org/document/9308921 (accessed May 04, 2022). 37. L. Romo, J. Zhang, K. Eastin, and C. Xue, “Short- Term Traffic Speed Prediction via Machine Learning,” Communications in Computer and Information Science , vol. 1311, pp. 31–42, 2020, doi: 10.1007/978-981-33-4532-4_3. 38. M. A. Abdelwahab, M. Abdel-Nasser, and R. ichiro Taniguchi, “Efficient and Fast Traffic Congestion Classification Based on Video Dynamics and Deep Residual Network,” Communications in Computer and Information Science , vol. 1212 CCIS, pp. 3–17, 2020, doi: 10.1007/978-981-15-4818-5_1. 39. N. A. M. Razali, N. Shamsaimon, K. K. Ishak, S. Ramli, M. F. M. Amran, and S. Sukardi, “Gap, techniques and evaluation: traffic flow prediction using machine learning and deep learning,” Journal of Big Data , vol. 8, no. 1, pp. 1–25, Dec. 2021, doi: 10.1186/S40537-021-00542-7/TABLES/4. 40. D. Xia et al. , “A distributed WND-LSTM model on MapReduce for short-term traffic flow prediction,” Neural Computing and Applications 2020 33:7 , vol. 33, no. 7, pp. 2393–2410, Jul. 2020, doi: 10.1007/S00521-020-05076-2. 41. D. H. Shin, K. Chung, and R. C. Park, “Prediction of Traffic Congestion Based on LSTM through Correction of Missing Temporal and Spatial Data,” IEEE Access , vol. 8, pp. 150784– 150796, 2020, doi: 10.1109/ACCESS.2020.3016469. 42. Z. Wang, R. Chu, M. Zhang, X. Wang, and S. Luan, “An Improved Selective Ensemble Learning Method for Highway Traffic Flow State Identification,” IEEE Access , vol. 8, pp. 212623–212634, 2020, doi: 10.1109/ACCESS.2020.3038801. 43. D. Liu, S. Hui, L. Li, Z. Liu, and Z. Zhang, “A Method for Short- Term Traffic Flow Forecasting Based on GCN-LSTM,” Proceedings - 2020 International Conference on Computer Vision, Image and Deep Learning, CVIDL 2020 , pp. 364–368, Jul. 2020, doi: 10.1109/CVIDL51233.2020.00-70. 44. Z. Bartlett, L. Han, T. T. Nguyen, and P. Johnson, “A Machine Learning Based Approach for the Prediction of Road Traffic Flowon Urbanised Arterial Roads,” Proceedings - 20th International Conference on High Performance Computing and Communications, 16th International Conference on Smart City and 4th International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018 , pp. 1285–1292, Jan. 2019, doi: 10.1109/HPCC/S MARTCITY/DSS.2018.00215. 45. Y. Zhang, H. Xu, and J. Wu, “An Automatic Background Filtering Method for Detection of Road Users in Heavy Traffics Using Roadside 3-D LiDAR Sensors with Noises,” IEEE Sens J, vol. 20, no. 12, pp. 6596–6604, Jun. 2020, doi:10.1109/JSEN.20 20.2976663 46. “12m IP65 distance sensor. ”http://en.benewake. com/product/ detail/5c345cd0e5b3a844c472329b (accessed Oct. 22, 2022). 47. “ToF LiDAR Distance Sensor|3D LiDAR|Laser Ranging Module|Solid-state Lidar Products|LiDAR with Mass-Poductive Price-BENEWAKE.” http://en. benewake.com/?gclid=Cj0KCQjwhsmaBhCvARIsAI bE bH5179aXornxMS8TUaAyzXMqPfCFfAU4Y9Hs GJhiKwvi4 W5uRUzKzkaAnLoEALw_wcB (accessed Oct. 22, 2022). 48. “MIT Deep Learning and Artificial Intelligence Lectures | Lex Fridman.” https://deeplearning.mit. edu/ (accessed Oct. 24, 2022). 49. “Theoretical and Advanced Machine Learning | TensorFlow.” https://www.tensorflow.org/resources/ learn-ml/theoretical-and- advanced-machine- learni ng?gclid=CjwKCAjwzNOaBhAcEiwAD7Tb6IC9_SQ 58aa JAt6H3o5mOePbVaHo03q9Sb_1azPy1OEB- 0LTz18SHBoCVtMQAvD_BwE (accessed Oct. 24, 2022). 50. A. M. Schaefer, S. Udluft, and H. G. Zimmermann, “Learning long-term dependencies with recurrent neural networks,” Neurocomputing, vol. 71, no. 13– 15, pp. 2481–2488, Aug. 2008, doi: 10.1016/ J.NEUCOM.2007.12.036. 51. S. Hochreiter and J. Schmidhuber, “Long Short- Term Memory,” Neural Comput, vol. 9, no. 8, pp.
RkJQdWJsaXNoZXIy NTg4NDg=