Global Journal of Human-Social Science, B: Geography, Environmental Science and Disaster Management, Volume 22 Issue 3
27. Liu, H. X., Jin, G. X., Wu, J., Sun, P., Liu, C., & Xu, C. Y. (2015). Effects of scale and structure of urban forest in lowering air temperature and increasing humidity in summer in Beijing. Journal of Beijing Forestry University, 37(10), 31-40. 28. Mahmood, T. & Islam, K. R. (2006). Response of rice seedlings to copper toxicity and acidity. Journal of plant nutrition, 29(5), 943-957. doi: 10.1080/019 04160600651704 29. Martínez-López, S., Martínez-Sánchez, M. J., Pérez- Sirvent, C., Bech, J., Martínez, M.D.C.G., García- Fernández, A. J. (2014). Screening of wild plants for use in the phytoremediation of mining-influenced soils containing arsenic in semiarid environments. Journal of soils and sediments, 14 (4), 794-809. 30. Maslo, S. (2016). Preliminary list of invasive alien plant species (IAS) in Bosnia and Herzegovina. Herbologia, 16(1), 1-14.Dalby, R. (2000). Minor bee plants in a major key: Tamarisk, Ailanthus and teasel. American bee Journal. 31. McDonald, A. G., Bealey, W. J., Fowler, D., Dragosits, U., Skiba, U., Smith, R. I. & Nemitz, E. (2007). Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmospheric Environment, 41 (38), 8455-8467. doi: 10.1016/j.chemosphere.2006. 03.016 32. Medina-Villar, S., Castro-Díez, P., Alonso, A., Cabra- Rivas, I., Parker, I.M., Pérez-Corona, E. (2015). Do the invasive trees, Ailanthus altissima and Robinia pseudoacacia, alter litterfall dynamics and soil properties of riparian ecosystems in Central Spain?. Plants and Soil, 396, 311–324 33. Medina-Villar, S., Rodríguez-Echeverría, S., Lorenzo, P., Alonso, A., Pérez-Corona, E., Castro-Díez, P. (2016). Impacts of the alien trees Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L. on soil nutrients and microbial communities. Soil Biology & Biochemistry, 93, 65-73. 34. Meusel, H., Jäger, E., Weinert, E. & Rauschert, S. T. (1992). Vergleichende Chorologie der zentraleuropäischen Flora, vol. 3.Gustav Fischer, Jena 35. Mohebzadeh, F., Motesharezadeh, B., Jafari, M., Zare, S., Saffari Aman, M. (2021). Remediation of heavy metal polluted soil by utilizing organic amendments and two plant species (Ailanthus altissima and Melia azedarach). Arabian Journal of Geosciences, 14, 1211. 36. Nagajyoti, P.C., Lee, K.D. & Sreekanth, T.V.M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters (8), 199–216. doi: 10.1007/s10311-010-0297-8 37. Nowak, D. J., Crane, D. E. & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban forestry & Urban Greening, 4(3-4), 115-123. doi: 10.1016/j.ufug.2006.01.007 38. Payá Pérez, A., Rodríguez Eugenio, N. (2018). Status of local soil contamination in Europe: Revision of the indicator “Progress in the management Contaminated Sites in Europe” Publications Office of the European Union, Luxembourg. 39. Petrović, D., Herceg, N., Kovaćević, Z., & Ostojić, I. (2011). Distribution of tree of heaven species Ailanthus altissima (Mill.) Swingle in Herzegovina. Herbologia, 12(1). 40. Piczak, K., Le ś niewicz, A. & Ż yrnicki, W. (2003). Metal concentrations in deciduous tree leaves from urban areas in Poland. Environmental monitoring and assessment, 86(3), 273-287. doi: 10.1023/A: 1024076504099 41. Piczak, K., Le ś niewicz, A. & Ż yrnicki, W. (2003). Metal concentrations in deciduous tree leaves from urban areas in Poland. Environmental monitoring and assessment, 86(3), 273-287. doi: 10.1023/A: 1024076504099 42. Popoviciu, D., Negreanu-Pîrjol, T. (2017). Bioaccumulation of heavy metals (Cu, Mn and Zn) in tree-of-heaven, Ailanthus altissima. Romanian- Syrian Journal of Geo-Bio-Diversity, 65-69. 43. Porta Casanellas, J., López-Acevedo Reguerín, M., Roquero de Laburu, C. (1999). Edafología: para la agricultura y el medio ambiente. Mundi-Prensa, Madrid. 44. Ranieri, E., Fratino, U., Petrella, A., Torretta, V., Rada, E.C. (2016). Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil. Environmental Science Pollution Research, 23, 15983–15989. 45. Sæbø, A., Popek, R., Nawrot, B., Hanslin, H. M., Gawronska, H. & Gawronski, S. W. (2012). Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment, 427, 347-354. doi: 10.1016/j. scitotenv.2012.03.084 46. Ugulu, I., Dogan, Y., Baslar, S. & Varol, O. (2012). Biomonitoring of trace element accumulation in plants growing at Murat Mountain. International Journal of Environmental Science and Technology, 9(3), 527-534. doi: 10.1007/ s13762-012-0056-4 47. Verkleij, J. A. C. & Schat, H. (1990). Mechanisms of metal tolerance in higher plants. Heavy metal tolerance in plants: Evolutionary aspects, 179-194. © 2022 Global Journals Volume XXII Issue III Version I 7 ( ) Global Journal of Human Social Science - Year 2022 B Ailanthus Altissima (Mill.) Swingle, Bioacumulated Specie of Contaminated Soils
RkJQdWJsaXNoZXIy NTg4NDg=