Global Journal of Human-Social Science, B: Geography, Environmental Science and Disaster Management, Volume 22 Issue 3
In: XIX Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica – COBRAMSEG. Anais... Bahia, 2018. [In Portuguese]. 9. Das, B. M. (2008). Advanced soil mechanics (3rd ed.). Taylor & Francis. 10. Farias, W. M. (2012). Processos Evolutivos de Intemperismo Químico e Sua Ação no Comportamento Hidromecânico de Solos do Planalto Central [PhD thesis] University of Brasilia (UnB). [In Portuguese]. 263 p. https://reposit orio.unb.br/handle/ 10482/11902. [In Portuguese]. 11. Feuerharmel, C., Gehling, W. Y. Y., & Bica, A. V. D. (2006). The use of filter-paper and suction-plate methods for determining the soil-water characteristic curve of undisturbed colluvium soils. Geotechnical Testing Journal, 29(5), 419–425. https://doi.org/10.1520/GTJ14004. 12. Forsyth, D. 2018. Probability and Statistics for Computer Science . Springer International Publishing AG. 13. Frank, I. E. and Todeschini, R. 1994. The data analysis handbook . Elsevier. 14. Gidigasu, M. D. (1976). Laterite soil engineering: Pedogenesis and engineering principles. Elsevier. ISBN 0-444-41283-2. 15. Gitirana, G. F. N., & Fredlund, D. G. (2004). Soil- water characteristic curve equation with independent properties. Journal of Geotechnical and Geoenvironmental Engineering, 130(2), 209– 212. https://doi.org/10.1061/( ASCE)1090-0241 (2004)130:2(209). 16. Grus, J. 2016. Data Science do Zero. Tradução de: Data Science from Scratch: First Principles with Python. traduzido por Welington Nascimento. Rio de Janeiro: Alta Books. 17. Guimarães, A. C. R. (2009). Um Método Mecanístico Empírico para Previsão da Deformação Permanente em Solos Tropicais Constituintes de Pavimentos [PhD thesis]. Federal University of Rio de Janeiro (UFRJ). [In Portuguese]. 18. Guimarães, A. C. R., Motta, L. M. G., & Castro, C. D. (2019). Permanent deformation parameters of fine – grained tropical soils. Road Materials and Pavement Design, 20(7), 1664–1681. https://doi.org/10.1080/ 14680629.2018.1473283. 19. Guimarães, A. C. R.; Silva Filho, J. C. and Castro, C. D. 2021. “Contribution to the use of alternative material in heavy haul railway sub-ballast layer”. Transportation Geotechnics , Volume 30, 100524, ISSN 2214-3912, https://doi.org/10.1016/j.trgeo. 20 21.100524. 20. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. 2009. Análise multivariada de dados . Bookman editora. 21. Hardle, W. K. Simar, L. 2015. Applied Multivariate Statistical Analysis . Fourth Edition. Springer: Verlag Berlin Heidelberg. 22. Harris, C.R., Millman, K. J., van der Walt, S.J. et al. 2020. “Array programming with NumPy”. Nature 585, 357–362. DOI: https://doi.org/10.10 38/s41586-020-2649-2. 23. Harris, C.R., Millman, K. J., van der Walt, S.J. et al. 2020. “Array programming with NumPy”. Nature 585, 357–362. DOI: https://doi.org/10.1038 /s41586-020-2649-2. 24. Hastie, T.; Tibshirani, R. and Friedman, J. 2009. The elements of statistical learning: data mining, inference, and prediction . Springer Science & Business Media. 25. Lima, C. D. A. Motta, L. M. G. Guimarães, A. C. R. 2017. “Estudo da deformação permanente de britas granito-gnaisse para uso em base e sub-base de pavimentos”. Revista Transportes. Volume 25, Número 2. DOI: 10.14295/transportes.v25i2.1262. [In Portuguese]. 26. Lima, C. D., Motta, L. M. G. da, Aragão, F., & Guimarães, A. C. R. (2020). Mechanical characterization of fine-grained lateritic soils for mechanistic-empirical flexible pavement design. Journal of Testing and Evaluation. https://doi.org/ 10.1520/JTE20180890. 27. Marinho, Fernando A. M.; Stuermer, Mônica M. 2000. “The Influence of the Compaction Energy on the SWCC of a Residual Soil”. Advances In Unsaturated Geotechnics , [s.l.], p. 125-141, 24 jul. American Society of Civil Engineers. http://dx.doi . org/10.1061/40510(287)8. 28. Mayssa Alves da Silva Sousa, Roberto Quental Coutinho & Laura Maria Goretti da Motta (2021): Analysis of the unsaturated behaviour of compacted lateritic fine-grained tropical soils for use in transport infrastructure, Road Materials and Pavement Design, DOI: https://doi.org/10.1080/14680629. 20 21.2009008. 29. MEDINA, J.; PREUSSLER, E. Características Resilientes de Solos Em Estudos de Pavimentos. SOLOS E ROCHAS. (REV. BRAS. DE GEOTECNIA)., ABMS/ABGE, v. 3, n.1, p. 3-26, 1980. [In Portuguese]. 30. Medina, J., & Motta, L. M. G. (2015). Mecânica dos Pavimentos. 2nd ed. Editora Interciência. [In Portuguese]. 31. Metz, J . 2006. Interpretação de cluster gerados por algoritmos de clustering hierárquico . Dissertação de Mestrado. Universidade de São Paulo, USP. São Paulo, Brasil. [In Portuguese]. 32. Millman, K. J. and M. Aivazis. 2011. “Python for Scientists and Engineers”. Computing in Science & Engineering . vol. 13, no. 2, pp. 9-12, March-April. DOI: 10.1109/MCSE.2011.36. 33. Nogami, J. S., & Villibor, D. F. (1991). Use of lateritic fine-grained soils in road pavement base courses. Geotechnical and Geological Engineering, 9(3–4), 167–182 . https://doi.org/10.1007/BF00881739. Volume XXII Issue III Version I 24 ( ) Global Journal of Human Social Science - Year 2022 © 2022 Global Journals B Clustering of Fine-Grained Tropical Soils using Data Science Tools Applied to their Geotechnical Properties
RkJQdWJsaXNoZXIy NTg4NDg=