Global Journal of Human-Social Science, B: Geography, Environmental Science and Disaster Management, Volume 23 Issue 6

Volume XXIII Issue VI Version I 18 ( ) Global Journal of Human Social Science - Year 2023 © 2023 Global Journals B Evaluating Soil Carbon Efflux Responses to Soil Moisture and Temperature Variations in Brazilian Biomes em Cuiabá-MT. Revista Estudo e Debate , Lajeado, v.23, n.2. http://dx.doi.org/10.22410/issn.1983-036X. v23i2a2016.1078 4. Aragão, L.; Poulter, B.; Barlow, J. B.; Anderson, L. O.; Malhi, Y.; Saatchi, S.; Phillips, O. L.; Gloor, E. 2014. Environmental change and the carbon balance of Amazonian forests. Biological Reviews ., 89, 913–931. https://doi.org/10.1111/brv.12088 5. Bond-Lamberty, B.; Thomson, A. 2010a. A global database of soil respiration data. Biogeosciences , 7(6). https://doi.org/10.5194/bg-7-1915-2010. 6. Bond-Lamberty, B.; Thomson, A.M. Temperature- associated increases in the global soil respiration record. Nature , 464, 579–582, 2010b. 7. Borken, W.; Matzner E. 2009. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology , 15, 808–824. https://doi.org/10.1111/j.1365-2486.2008.01681. 8. Bowling, D. R.; Grote, E. E.; Belnap, J. 2011. Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States . Journal of Geophysical Research: Biogeosciences , 116, G3. https://doi.org/ 10.1029/2011JG001643 9. Chen, H.; Zhang, W.; Gilliam, F.; Liu L.; Huang, J.; Zhang, T.; Wang, W.; Mo, J. 2013. Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of Southern China. Biogeosciences 10 (10), 6609–6616. https://doi.org/ 10.5194/bg-10-6609-2013 10. Chou.; W. W.; Silver, W. L.; Jackson, R.; D.; Thompson, A. W.; Allen-Diaz, B. A. 2008. The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biology , 14, 1382–1394. https://doi.org/10.1111/j.13 65-2486.2008.01572.x 11. COSTA, Alan N. et al. Annual litter production in a Brazilian Cerrado woodland savanna. Southern Forests: a Journal of Forest Science, v. 82, n. 1, p. 65-69, 2020. https://doi.org/10.2989/20702620.20 19.1686691 12. Dalmagro, H. J.; Lathuillière, M. J.; Hawthorne, I.; Morais, D. D.; Pinto Junior, O. B.; Couto, E. G.; Johnson, M. S. 2018. Carbon biogeochemistry of a flooded Pantanal forest over three annual flood cycles. Biogeochemistry , 139(1), 1-18. https://doi. org/10.1007/s10533-018-0450-1 13. Davidson, E. A.; Belk, E; Boone, R. D. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global change biology , 4(2), pp.217-227. https://doi.org/10.1046/j. 1365-2486.1998.00128.x 14. Davidson, E. A.; Janssens, I. A.; Luo, Y. 2006. On the variability of respiration in terrestrial ecosystems: moving beyond Q10 . Global Change Biology , 12(2), pp.154-164. https://doi.org/10.1111/j.1365-2486.20 05.01065.x 15. Dixon, R. K.; Solomon, A. M.; Brown, S.; Houghton, R. A.; Trexier, M. C.; Wisniewski, J. 1994. Carbon pools and flux of global forest ecosystems. Science , 263(5144), 185-190. https://doi.org/10.1126/science .263.5144.185 16. European Commission, 2006. Thematic Strategy for Soil Protection . Com, p. 231. 17. Gava R.; De Freitas, P. S.; Faria, R. T. D.; Rezende, R.; Frizzone, J. A. 2013. Soil water evaporation under densities of coverage with vegetable residue. Engenharia Agrícola , 33 (1), 89-98. https://doi.org/ 10.1590/S0100-69162013000100010 18. Holland M. (Ed.). Ecotones: the role of landscape boundaries in the management and restoration of changing environments. Springer Science & Business Media, 2012. 19. INMET - Instituto Nacional de Meteorologia. Climatologia. 2018. Available in: < http://www.in met.gov.br/portal/> . Accessed in September 15, 2020. 20. IPCC (2007) Summary for policymakers. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE). Cambridge University Press, Cambridge. 21. JOAQUIM, T. D. et al. Thermo-hygrometric modeling using ENVI-met® software to an urban park in Cuiabá–Brazil. Ciência e Natura, v. 40, p. e37, 2018. DOI: 10.5902/2179460X29510 22. Kirschbaum, M. U. F. 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry , 27, 753–760. https://doi.org/10.1016/0038-0717 (94)00242-S 23. Lathuillière, M. J.; Pinto Junior, O. B.; Johnson, M. S.; Jassal, R. S.; Dalmagro, H. J.; Leite, N. K.; Speratti, A. B.; Krampe, D.; Couto, E. G. 2017. Soil CO2 concentrations and efflux dynamics of a tree island in the Pantanal wetland. Journal of Geophysical Research: Biogeosciences , 122(8), pp.2154-2169. https://doi.org/10.1002/2017JG0038 77 24. Liu, Y.; Liu, S.; Miao, R.; Liu, Y.; Wang, D.; Zhao, C. 2019. Seasonal variations in the response of soil CO 2 efflux to precipitation pulse under mild drought in a temperate oak (Quercus variabilis) forest. Agricultural and forest meteorology , 271, pp.240- 250. https://doi.org/10.1016/j.agrformet.2019.03.009 25. Mahecha, M. D.; Reichstein, M.; Carvalhais, N.; Lasslop, G.; Lange, H.; Seneviratne, S. I.; ... and Richardson, A. D. 2010. Global convergence in the temperature sensitivity of respiration at ecosystem

RkJQdWJsaXNoZXIy NTg4NDg=