Global Journal of Management and Business Research, E: Marketing, Volume 23 Issue 1

Understanding the Age Differences in Adopting WFTs: An Extension of the UTAUT2 Model 14 Global Journal of Management and Business Research Volume XXIII Issue I Version I Year 2023 ( )E © 2023 Global Journals 6. Alsswey, A., & Al-Samarraie, H., 2019. Elderly users’ acceptance of mHealth user interface (UI) design- based culture: the moderator role of age. Journal on Multimodal User Interfaces, 1-11. 7. Amoroso, D., & Lim, R. (2017). The mediating effects of habit on continuance intention. International Journal of Information Management, 37 (6), 693-702. 8. Arenas Gaitán, J., Peral Peral, B., & Ramón Jerónimo, M. (2015). Elderly and internet banking: An application of UTAUT2. Journal of Internet Banking and Commerce, 20 (1), 1-23. http://hdl. handle.net/11441/57220. 9. Arning, K., & Ziefle, M. (2009). Effects of age, cognitive, and personal factors on PDA menu navigation performance. Behaviour & Information Technology, 28 (3), 251-268. 10. Bangladesh Bureau of Statistics. Statistical Yearbook of Bangladesh 2019. Dhaka, Bangladesh: Bangladesh Bureau of Statistics, Ministry of Planning, Government of the People’s of Republic Bangladesh, 2020. 11. Barua, Z. (2022). COVID-19 Misinformation on Social Media and Public’s Health Behavior: Understanding the Moderating Role of Situational Motivation and Credibility Evaluations. Human Arenas, 1-24. 12. Barua, Z., & Barua, A. (2021). Acceptance and usage of mHealth technologies amid COVID-19 pandemic in a developing country: the UTAUT combined with situational constraint and health consciousness. Journal of Enabling Technologies, 15 (1), 1-22. 13. Barua, S., & Barua, A. (2021). Understanding the Determinants of Wearable Fitness Technology Adoption and Use in a Developing Country: An Empirical Study. The Journal of Management Theory and Practice (JMTP), 78-87. 14. Barua, Z., Barua, S., Aktar, S., Kabir, N., & Li, M. (2020). Effects of misinformation on COVID-19 individual responses and recommendations for resilience of disastrous consequences of misinformation. Progress in Disaster Science, 8, 10 0119. 15. Barua, Z., Aimin, W., & Hongyi, X. (2018). A perceived reliability-based customer satisfaction model in self-service technology. The Service Industries Journal, 38 (7-8), 446-466. 16. Butryn, M. L., Arigo, D., Raggio, G. A., Colasanti, M., Forman, E. M., 2016. Enhancingphysical activity promotion in midlife women with technology-based self-monitoring and social connectivity: a pilot study. J. Health Psychol. 21 (8), 1548–1555. http://dx. doi.org/10.1177/1359105314558895. 17. Chaklader, H., Haque, M., and Kabir, M. (2003). Socio-economic situation of urban elderly population from a microstudy. In: Kabir, M, (ed). The Elderly Contemporary Issues, Dhaka: Bangladesh Association of Gerontology, pp1-13. 18. Chan, M., Estève, D., Fourniols, J.-Y., Escriba, C. and Campo, E. (2012), “Smart wearable systems: current status and future challenges”, Artificial Intelligence in Medicine, Vol. 56 No. 3, pp. 137-156. https://doi.org/10.1016/j.artmed.2012.09.003 19. Chau, K. Y.; Cheung, M. L.; Lam, H. S.; Tso, K.H.; Flint, S. W.; Broom, D. R.; Tse, G.; Li, K. Y. Smart technology for healthcare: Exploring the antecedents of adoption intention of healthcare wearable technology in Hong Kong. Health Psychol. Res. 2019, 7. in-press. 20. Chin, W. W., 1998. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. (295: 2), 295–336. 21. Choudrie, J., Alfalah, A., Spencer, N., 2017. Older Adults Adoption, Use and Diffusion of E- Government Services in Saudi Arabia, Hail City: A Quantitative Study, Hawaii International Conference on System Sciences 50th Anniversary, Waikoloa, United States. 22. Cimperman, M., Makovec Brenčič, M., & Trkman, P. (2016). Analyzing older users’ home telehealth services acceptance behavior— Applying an Extended UTAUT model. International Journal of Medical Informatics, 90, 22–31. https://doi.org/10.10 16/j.ijmedinf.2016.03.002. 23. Coughlin SS, Stewart J. Use of consumer wearable devices to promote physical activity: a review of health intervention studies. J Environ Sci Health 2016; 2 (6). https://doi.org/10.15436/2378-6841.16. 1123. 24. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13 (3), 319-340. http:// dx.doi.org/10.2307/249008. 25. Davis, F. D., Bagozzi, R.P., & Warshaw, P. R., (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35 (8), 982-1003. 26. Debnath, A., Kobra, K. T., Rawshan P. P., Paramita M., Islam M, N., 2018. An Explication of Acceptability of Wearable Devices in Context of Bangladesh: A User Study. In: iConference 2018 Proceedings. https://doi.org/10.1109/FiCloud.2018. 00027. 27. Dehghani, M., Kim, K. J., & Dangelico, R. M. (2018). Will smartwatches last? Factors contributing to intention to keep using smart wearable technology. Telematics and Informatics, 35 (2), 480–490. 28. Demiris, G., Thompson, H., Boquet, J., LE, T., Chaudhuri, S., Chung, J. Older adults’ acceptance of a community-based telehealth wellness system, Inf. Health Soc. Care 38 (2013) 27–36.

RkJQdWJsaXNoZXIy NTg4NDg=