Global Journal of Medical Research, A: Neurology & Nervous System, Volume 23 Issue 3

directions. Annals of the New York Academy of Sciences 2022; 1511 (1): 5-21. 37. Cerf M, Thiruvengadam N, Mormann F, et al. On- line, voluntary control of human temporal lobe neurons. Nature 2010; 467: 1104-1108. 38. Penfield W. Epilepsy and surgical therapy. Archives of Neurology and Psychiatry 1936; 36 (3): 449-484. 39. Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sinauer Associates, Inc. 2001. 40. Merker B. Consciousness without a cerebral cortex: A challenge for neuroscience and medicine. Behavioral and Brain Sciences 2007; 30 (1): 63-134. 41. Kawkabani K. Preserved consciousness in the absence of a cerebral cortex, the legal and ethical implications of redefining consciousness and its neural correlates: A case for a subcortical system generating affective consciousness. Neuroscience and Neurobiology Commons, Honors Research Projects 2018; 734. 42. Theyel BB, Llano DA, Sherman SM. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nature Neuroscience 2010; 13: 84-88. 43. Posner JB, Plum F. Contemporary neurology series. 4. Oxford University Press; Oxford; New York: Plum and Posner’s Diagnosis of Stupor and Coma 2007; p. xiv.p. 401. 44. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 2007; 448 (7153): 600-603. 45. Lemaire J-J, Sontheimer A, Pereira B, et al. Deep brain stimulation in five patients with severe disorders of consciousness. Annals of Clinical and Translational Neurology 2018; 5 (11): 1372-1384. 46. DeRubeis RJ, Siegle GJ, Hollon SD. Cognitive therapy vs. medications for depression: Treatment outcomes and neural mechanisms. Nat Rev Neurosci 2008; 9 (10): 788-796. 47. Binder MR. The multi-circuit neuronal hyperexcitability hypothesis of psychiatric disorders. AJCEM 2019; 7 (1): 12-30. 48. Ferreira MAR, O’Donovan MC, Sklar P. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40 (9): 1056-1058. 49. Yuan A, Yi Z, Wang Q, et al. ANK3 as a risk gene for schizophrenia: new data in Han Chinese and meta analysis. Am J Med Genet B Neuropsychiatr Genet 2012; 159B (8): 997-1005. 50. Green EK, Grozeva D, Jones I, et al., Wellcome Trust Case Control Consortium, Holmans, PA, Owen, MJ, O'Donovan, MC, Craddock N. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 2010; 15 (10): 1016-1022. 51. Lopez AY, Wang X, Xu M, et al. Ankyrin-G isoform imbalance and interneuronopathy link epilepsy and bipolar disorder. Mol Psychiatry 2017; 22 (10): 1464–1472. 52. Gargus JJ. Ion channel function candidate genes in multigenic neuropsychiatric disease. Biol Psychiatry 2006; (60) 2: 177-185. 53. Liu Y, Blackwood DH, Caesar S, et al. (2011) Meta- analysis of genome-wide association data of bipolar disorder and major depressive disorder. Mol Psychiatry. 16 (1). 54. Iqbal Z, Vandeweyer G, van der Voet M, et al. (2013) Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders. Human Molecular Genetics. 22: 1960-1970. 55. Subramanian J, Dye L, and Morozov, A. (2013) Rap1 Signaling Prevents L-Type Calcium Channel- Dependent Neurotransmitter Release. Journal of Neuroscience. 33 (17): 7245. 56. Santos M, D'Amico D, Spadoni O, et al. (2013) Hippocampal hyperexcitability underlies enhanced fear memories in TgNTRK3, a panic disorder mouse model. Journal of Neuroscience. 33 (38): 15259- 15271. 57. Contractor A, Klyachko VA, and Portera-Cailliau C. (2015) Altered neuronal and circuit excitability in Fragile X syndrome. Neuron. 87 (4): 699-715. 58. O’Brien NL, Way MJ, Kandaswamy R, et al.The functional GRM3 Kozak sequence variant rs148754219 affects the risk of schizophrenia and alcohol dependence as well as bipolar disorder. Psychiatric Genetics2014; 24: 277–278. 59. Schizophrenia Working Group of the Psychiatric Genomics Consortium: Ripke S, Neale BM, and O’Donovan MC. (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature. 511 (7510): 421-427. 60. Freedman R, Coon H, Myles-Worsley M, et al. (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. PNAS. 94 (2): 587–592. 61. Pizzarelli R and Cherubini E. (2011) Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast. 1011: 157193. 62. Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neuroscience 2007; 27 (33): 8877-8884. 63. Leuchter AF, Cook IA, Hunter AM, Cai C, Horvath S. Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLoS One 2012; 7 (2): 1-13. e32508. 13 Year 2023 Global Journal of Medical Research Volume XXIII Issue III Version I ( D ) A © 2023 Global Journals Untangling Psychology from Biology in the Treatment of Psychiatric Disorders

RkJQdWJsaXNoZXIy NTg4NDg=