Global Journal of Medical Research, F: Diseases, Volume 23 Issue 2
8. Harada, M. (2004). A study of handwashing techniques of early childhood. J Chugokugakuen, 3, 97-102. 9. Hatanaka, N., Xu, B., Yasugi, M., Morino, H., Tagishi, H., Miura, T., Shibata, T., & Yamasaki, S. (2021, Dec). Chlorine dioxide is a more potent antiviral agent against SARS-CoV-2 than sodium hypochlorite. J Hosp Infect, 118, 20-26. https://doi.org/10.1016/j.jhin.2021.09.006 10. Horiuchi, S., Sakamoto, H., Abe, S. K., Shinohara, R., Kushima, M., Otawa, S., Yui, H., Akiyama, Y., Ooka, T., Kojima, R., Yokomichi, H., Miyake, K., Mizutani, T., & Yamagata, Z. (2021). Factors of parental COVID-19 vaccine hesitancy: A cross sectional study in Japan. PLoS One, 16(12), e0261121. https://doi.org/10.1371/journal.pone.0261121 11. Imamura, T., Saito, M., Ko, Y. K., Imamura, T., Otani, K., Akaba, H., Ninomiya, K., Furuse, Y., Miyahara, R., Sando, E., Yasuda, I., Tsuchiya, N., Suzuki, M., & Oshitani, H. (2021). Roles of Children and Adolescents in COVID-19 Transmission in the Community: A Retrospective Analysis of Nationwide Data in Japan. Front Pediatr, 9, 705882. https://doi.org/10.3389/fped.2021.705882 12. Ko, Y. K., Furuse, Y., Ninomiya, K., Otani, K., Akaba, H., Miyahara, R., Imamura, T., Imamura, T., Cook, A. R., Saito, M., Suzuki, M., & Oshitani, H. (2022, Mar). Secondary transmission of SARS-CoV-2 during the first two waves in Japan: Demographic characteristics and overdispersion. Int J Infect Dis, 116, 365-373. https://doi.org/10.1016/j.ijid.2022. 01.036 13. Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020, Mar). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents, 55(3), 105924. https://doi.org/10.1016/ j.ijantimicag.2020.105924 14. Mimura, S., Fujioka, T., & Mitsumaru, A. (2010). Preventive effect against influenza-like illness by low-concentration chlorine dioxide gas. Jpn J Infect Prevent Control, 25(5), 277-280. 15. Morino, H., Koizumi, T., Miura, T., Fukuda, T., & Shibata, T. (2013). [Inactivation of feline calicivirus by chlorine dioxide gas-generating gel]. Yakugaku Zasshi, 133(9), 1017-1022. https://doi.org/10.1248/ yakushi.13-00007 16. Ogata, N., & Miura, T. (2020). Inhibition of the binding of spike protein of SARS-CoV-2 coronavirus to human angiotensin-converting enzyme 2 by chlorine dioxide. Annals of Pharmacology and Pharmaceutics, 5(5). 17. Ogata, N., & Miura, T. (2021). Inhibition of the Binding of Variants of SARS-CoV-2 Coronavirus Spike Protein to a Human Receptor by Chlorine Dioxide. Ann Pharmacol Pharm. 2021; 6 (1), 1199. 18. Ogata, N., Sakasegawa, M., Miura, T., Shibata, T., Takigawa, Y., Taura, K., Taguchi, K., Matsubara, K., Nakahara, K., Kato, D., Sogawa, K., & Oka, H. (2016). Inactivation of airborne bacteria and viruses using extremely low concentrations of chlorine dioxide gas. Pharmacology, 97(5-6), 301-306. https://doi.org/10.1159/000444503 19. Ogata, N., & Shibata, T. (2008, Jan). Protective effect of low-concentration chlorine dioxide gas against influenza A virus infection. J Gen Virol, 89(Pt 1), 60-67. https://doi.org/10.1099/vir.0.83393-0 20. Ogata, N., & Shibata, T. (2009). Effect of chlorine dioxide gas of extremely low concentration on absenteeism of schoolchildren. Int J Med Med Sci, 1(7), 288-289. 21. Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020, May). Structural basis of receptor recognition by SARS- CoV-2. Nature, 581(7807), 221-224. https://doi.org/10.1038/s41586-020-2179-y 22. Sun, Z., Qian, Y., Ogata, N., Cai, X., Han, W., Xie, Y., Morino, H., Sogawa, K., Shibata, T., & Qu, D. (2022, 2022/02/01/). Effect of chlorine dioxide on avian influenza A (H7N9) virus. Biosafety Health, 4(1), 53- 57. https://doi.org/https :/ /doi.org/10.1016/j.bsheal. 2021.12.002 23. Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R., Litvinukova, M., Talavera-López, C., Maatz, H., Reichart, D., Sampaziotis, F., Worlock, K. B., Yoshida, M., & Barnes, J. L. (2020, May). SARS- CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med, 26(5), 681-687. https://doi.org/ 10.1038/s41591-020-0868-6 24. Taiko Pharmaceutical Co., L. Infection Control Pro ductshttps://www.seirogan.co.jp/en/business/cle verin_g_daikukan.html (Accessed: February 2, 2023) 25. UNICEF. (2022). COVID-19 and children. Retrieved October 28. from https://data.unicef.org/covid-19- and-children/ 26. van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020, Apr 16). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med, 382(16), 1564-1567. https://doi.org/ 10.1056/NEJMc2004973 27. Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J., & Wang, F. S. (2020, Apr). Pathological findings of COVID-19 associated with acute respiratory distress 4 Year 2023 Global Journal of Medical Research Volume XXIII Issue II Version I ( D ) F © 2023 Global Journals Relationship between COVID-19 and use of Chlorine Dioxide Gas-Releasing Agents in Elementary Schools
RkJQdWJsaXNoZXIy NTg4NDg=