Global Journal of Medical Research, F: Diseases, Volume 23 Issue 2

anti-angiogenic (VEGF) therapy may be achieved in combination with inhibitors of tumor hypoxic adaptation [54]. XII. C onclusion In summary, stemness in tumor cells is an indicator of therapeutic resistance and prognosis. Refinement of the markers of stemness used to identify these cells and their phenotypes in cancers is leading to the ability to predict treatment responses and develop new approaches to the effective elimination of resistant tumor cell populations. Better understanding of the nature of cancer stem cells heightens our awareness of the appropriate application of emergent therapy modalities, such as immune checkpoint inhibitors, tumor vaccines, and hypoxia-targeted drugs. Improved understanding of tumor biology is not possible without the intimate understanding of the role of the cancer stem cell as a critical player in the initiation, maintenance, and progression of cancer. R eferences R éférences R eferencias 1. A. K. Yadav and N. S. Desai, “Cancer Stem Cells: Acquisition, Characteristics, Therapeutic Implications, Targeting Strategies and Future Prospects,” Stem Cell Rev. Rep., vol. 15, no. 3, pp. 331–355, Jun. 2019, doi: 10.1007/s12015-019- 09887-2. 2. S. M. Afify and M. Seno, “Conversion of Stem Cells to Cancer Stem Cells: Undercurrent of Cancer Initiation,” Cancers, vol. 11, no. 3, Art. no. 3, Mar. 2019, doi: 10.3390/cancers11030345. 3. M. R. Atashzar et al., “Cancer stem cells: A review from origin to therapeutic implications,” J. Cell. Physiol., vol. 235, no. 2, pp. 790–803, 2020, doi: 10.1002/jcp.29044. 4. P. M. Aponte and A. Caicedo, “Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment,” Stem Cells Int., vol. 2017, p. e5619472, Apr. 2017, doi: 10.1155/2017/5619472. 5. V. Snyder, T. C. Reed-Newman, L. Arnold, S. M. Thomas, and S. Anant, “Cancer Stem Cell Metabolism and Potential Therapeutic Targets,” Front. Oncol., vol. 8, 2018, Accessed: Oct. 27, 2022. [Online]. Available: https://www.frontiersin . org/articles/10.3389/fonc.2018.00203 6. Y. Atlasi, L. Looijenga, and R. Fodde, “Chapter Thirteen - Cancer Stem Cells, Pluripotency, and Cellular Heterogeneity: A WNTer Perspective,” in Current Topics in Developmental Biology, vol. 107, M. Rendl, Ed. Academic Press, 2014, pp. 373–404. doi: 10.1016/B978-0-12-416022-4.00013-5. 7. R. Leão, C. Domingos, A. Figueiredo, R. Hamilton, U. Tabori, and P. Castelo-Branco, “Cancer Stem Cells in Prostate Cancer: Implications for Targeted Therapy,” Urol. Int., vol. 99, no. 2, pp. 125–136, 2017, doi: 10.1159/000455160. 8. S.-M. Tu and S.-H. Lin, “Prostate Cancer Stem Cells,” Clin. Genitourin. Cancer, vol. 10, no. 2, pp. 69–76, Jun. 2012, doi: 10.1016/j.clgc.2012.01.002. 9. W. Mei, X. Lin, A. Kapoor, Y. Gu, K. Zhao, and D. Tang, “The Contributions of Prostate Cancer Stem Cells in Prostate Cancer Initiation and Metastasis,” Cancers, vol. 11, no. 4, Art. no. 4, Apr. 2019, doi: 10.3390/cancers11040434. 10. A. Vicente-Dueñas, J. Hauer, C. Cobaleda, A. Borkhardt, and I. Sánchez-García, “Epigenetic Priming in Cancer Initiation,” Trends Cancer, vol. 4, no. 6, pp. 408–417, Jun. 2018, doi: 10.1016/j.trecan.2018.04.007. 11. D.-Y. Sun, J.-Q. Wu, Z.-H. He, M.-F. He, and H.-B. Sun, “Cancer-associated fibroblast regulate proliferation and migration of prostate cancer cells through TGF- β signaling pathway,” Life Sci., vol. 235, p. 116791, Oct. 2019, doi: 10.1016/ j.lfs.2019.116791. 12. A. Begum et al., “Direct Interactions With Cancer- Associated Fibroblasts Lead to Enhanced Pancreatic Cancer Stem Cell Function,” Pancreas, vol. 48, no. 3, pp. 329–334, Mar. 2019, doi: 10.1097/MPA.0000000000001249. 13. X. Liu, W. (Jess) Li, I. Puzanov, D. W. Goodrich, G. Chatta, and D. G. Tang, “Prostate cancer as a dedifferentiated organ: androgen receptor, cancer stem cells, and cancer stemness,” Essays Biochem., vol. 66, no. 4, pp. 291–303, Sep. 2022, doi: 10.1042/EBC20220003. 14. J. J. Alumkal et al., “Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance,” Proc. Natl. Acad. Sci., vol. 117, no. 22, pp. 12315–12323, Jun. 2020, doi: 10.1073/ pnas.1922207117. 15. P. Vummidi Giridhar, K. Williams, A. P. VonHandorf, P. L. Deford, and S. Kasper, “Constant Degradation of the Androgen Receptor by MDM2 Conserves Prostate Cancer Stem Cell Integrity,” Cancer Res., vol. 79, no. 6, pp. 1124–1137, Mar. 2019, doi: 10.1158/0008-5472.CAN-18-1753. 16. A. Srinivasan, L. Senbanjo, S. Majumdar, R. B. Franklin, and M. A. Chellaiah, “Androgen receptor expression reduces stemness characteristics of prostate cancer cells (PC3) by repression of CD44 and SOX2,” J. Cell. Biochem., vol. 120, no. 2, pp. 2413–2428, 2019, doi: 10.1002/jcb.27573. 17. V. Richard, T. R. S. Kumar, and R. M. Pillai, “Transitional dynamics of cancer stem cells in invasion and metastasis,” Transl. Oncol., vol. 14, no. 1, p. 100909, Jan. 2021, doi: 10.1016/ j.tranon. 2020.100909. 18. S. Qin, B. A. Schulte, and G. Y. Wang, “Role of senescence induction in cancer treatment,” World J. 23 Year 2023 Global Journal of Medical Research Volume XXIII Issue II Version I ( D ) F © 2023 Global Journals Cancer Stem Cells as the Key to Cancer: Special Emphasis on Prostate Cancer

RkJQdWJsaXNoZXIy NTg4NDg=