Global Journal of Medical Research, F: Diseases, Volume 23 Issue 2

Clin. Oncol., vol. 9, no. 8, pp. 180–187, Dec. 2018, doi: 10.5306/wjco.v9.i8.180. 19. L. Walcher et al., “Cancer Stem Cells—Origins and Biomarkers: Perspectives for Targeted Personalized Therapies,” Front. Immunol., vol. 11, 2020, Accessed: Nov. 03, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fimmu.2 020.01280 20. A. Chen et al., “Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients,” Int. J. Biol. Sci., vol. 18, no. 1, pp. 360–373, Jan. 2022, doi: 10.7150/ijbs.66913. 21. W. Jin, “Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial–Mesenchymal Transition,” Cells, vol. 9, no. 1, Art. no. 1, Jan. 2020, doi: 10.3390/ cells9010217. 22. R. Tsunedomi, K. Yoshimura, N. Suzuki, S. Hazama, and H. Nagano, “Clinical implications of cancer stem cells in digestive cancers: acquisition of stemness and prognostic impact,” Surg. Today, vol. 50, no. 12, pp. 1560–1577, Dec. 2020, doi: 10.1007/s00595-020-01968-x. 23. L. Yi et al., “Integrative stemness characteristics associated with prognosis and the immune microenvironment in esophageal cancer,” Pharmacol. Res., vol. 161, p. 105144, Nov. 2020, doi: 10.1016/j.phrs.2020.105144. 24. H. Li, L. Piao, S. Liu, Y. Cui, and Y. Xuan, “B7-H4 is a potential prognostic biomarker of prostate cancer,” Exp. Mol. Pathol., vol. 114, p. 104406, Jun. 2020, doi: 10.1016/j.yexmp.2020.104406. 25. L. T. H. Phi et al., “Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment,” Stem Cells Int., vol. 2018, p. e5416923, Feb. 2018, doi: 10.1155/2018/5416923. 26. C. Wefers, G. Schreibelt, L. F. A. G. Massuger, I. J. M. de Vries, and R. Torensma, “Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG,” Front. Immunol., vol. 9, 2018, Accessed: Nov. 04, 2022. [Online]. Available: https://www.frontiersin . org/articles/10.3389/fimmu.2018.01412 27. N. Badrinath and S. Y. Yoo, “Recent Advances in Cancer Stem Cell-Targeted Immunotherapy,” Cancers, vol. 11, no. 3, Art. no. 3, Mar. 2019, doi: 10.3390/cancers11030310. 28. Z. Wang, K. Zhao, T. Hackert, and M. Zöller, “CD44/CD44v6 a Reliable Companion in Cancer- Initiating Cell Maintenance and Tumor Progression,” Front. Cell Dev. Biol., vol. 6, 2018, Accessed: Oct. 27, 2022. [Online]. Available: https://www.frontiersin . org/articles/10.3389/fcell.2018.00097 29. M. Yassin et al., “A novel method for detecting the cellular stemness state in normal and leukemic human hematopoietic cells can predict disease outcome and drug sensitivity,” Leukemia, vol. 33, no. 8, Art. no. 8, Aug. 2019, doi: 10.1038/s41375- 019-0386-z. 30. M. Najafi, K. Mortezaee, and J. Majidpoor, “Cancer stem cell (CSC) resistance drivers,” Life Sci., vol. 234, p. 116781, Oct. 2019, doi: 10.1016/j.lfs. 2019.116781. 31. M. Zhang, X. Wang, X. Chen, F. Guo, and J. Hong, “Prognostic Value of a Stemness Index-Associated Signature in Primary Lower-Grade Glioma,” Front. Genet., vol. 11, 2020, Accessed: Nov. 03, 2022. [Online]. Available: https://www.frontiersin.org/ articles/10.3389/fgene.2020.00441 32. “Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response | Springer Link.” https://link.springer.com/article/ 10.1186/s13073-022-01050-w (accessed Nov. 04, 2022). 33. A. Abad, D. Graifer, and A. Lyakhovich, “DNA damage response and resistance of cancer stem cells,” Cancer Lett., vol. 474, pp. 106–117, Apr. 2020, doi: 10.1016/j.canlet.2020.01.008. 34. N. Menssouri et al., “Abstract 358: A prospective study of prostate cancer metastases identifies an androgen receptor activity-low, stemness program associated with resistance to androgen receptor axis inhibitors and unveils mechanisms of clonal evolution,” Cancer Res., vol. 81, no. 13_Supplement, p. 358, Jul. 2021, doi: 10.1158/1538-7445.AM2021-358. 35. D. O’Reilly, P. Johnson, and P. J. Buchanan, “Hypoxia induced cancer stem cell enrichment promotes resistance to androgen deprivation therapy in prostate cancer,” Steroids, vol. 152, p. 108497, Dec. 2019, doi: 10.1016/j.steroids.2019. 108497. 36. J. R. Federer-Gsponer et al., “Patterns of stemness- associated markers in the development of castration-resistant prostate cancer,” The Prostate, vol. 80, no. 13, pp. 1108–1117, 2020, doi: 10.1002/pros.24039. 37. B. G. Sánchez, A. Bort, D. Vara-Ciruelos, and I. Díaz-Laviada, “Androgen Deprivation Induces Reprogramming of Prostate Cancer Cells to Stem- Like Cells,” Cells, vol. 9, no. 6, Art. no. 6, Jun. 2020, doi: 10.3390/cells9061441. 38. S. Palomeras, S. Ruiz-Martínez, and T. Puig, “Targeting Breast Cancer Stem Cells to Overcome Treatment Resistance,” Molecules, vol. 23, no. 9, Art. no. 9, Sep. 2018, doi: 10.3390/molecules 23092193. 39. C. Saygin, D. Matei, R. Majeti, O. Reizes, and J. D. Lathia, “Targeting Cancer Stemness in the Clinic: From Hype to Hope,” Cell Stem Cell, vol. 24, no. 1, 24 Year 2023 Global Journal of Medical Research Volume XXIII Issue II Version I ( D ) F © 2023 Global Journals Cancer Stem Cells as the Key to Cancer: Special Emphasis on Prostate Cancer

RkJQdWJsaXNoZXIy NTg4NDg=