Global Journal of Medical Research, F: Diseases, Volume 23 Issue 2
pp. 25–40, Jan. 2019, doi: 10.1016/j.stem. 2018.11.017. 40. “Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance – Science Direct.” https://www.sciencedirect.com/science/ article/pii/S0925443918304769 (accessed Nov. 04, 2022). 41. J. Haynes et al., “Administration of Hypoxia- Activated Prodrug Evofosfamide after Conventional Adjuvant Therapy Enhances Therapeutic Outcome and Targets Cancer-Initiating Cells in Preclinical Models of Colorectal Cancer,” Clin. Cancer Res., vol. 24, no. 9, pp. 2116–2127, Apr. 2018, doi: 10.1158/1078-0432.CCR-17-1715. 42. A. K. Croker and A. L. Allan, “Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells,” Breast Cancer Res. Treat., vol. 133, no. 1, pp. 75–87, May 2012, doi: 10.1007/s10549-011-1692-y. 43. B. N. Landen et al., “Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer,” Mol. Cancer Ther., vol. 9, no. 12, pp. 3186– 3199, Dec. 2010, doi: 10.1158/1535-7163.MCT-10- 0563. 44. J. Wang et al., “Notch Promotes Radioresistance of Glioma Stem Cells,” Stem Cells, vol. 28, no. 1, pp. 17–28, Jan. 2010, doi: 10.1002/stem.261. 45. W. K. Chau, C. K. Ip, A. S. C. Mak, H.-C. Lai, and A. S. T. Wong, “c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/ β -catenin-ATP-binding cassette G2 signaling,” Oncogene, vol. 32, no. 22, pp. 2767–2781, May 2013, doi: 10.1038/onc. 2012.290. 46. L. Luo et al., “Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome,” Exp. Mol. Pathol., vol. 91, no. 2, pp. 596–602, Oct. 2011, doi: 10.1016/ j.yexmp.2011.06.005. 47. S. Zhang et al., “Identification and characterization of ovarian cancer-initiating cells from primary human tumors,” Cancer Res., vol. 68, no. 11, pp. 4311– 4320, Jun. 2008, doi: 10.1158/0008-5472.CAN-08- 0364. 48. T. Nunes et al., “Targeting Cancer Stem Cells to Overcome Chemoresistance,” Int. J. Mol. Sci., vol. 19, no. 12, Art. no. 12, Dec. 2018, doi: 10.3390/ijms19124036. 49. A. Malanchi et al., “Interactions between cancer stem cells and their niche govern metastatic colonization,” Nature, vol. 481, no. 7379, pp. 85–89, Jan. 2012, doi: 10.1038/nature10694. 50. G.-B. Jang et al., “Blockade of Wnt/ β -catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype,” Sci. Rep., vol. 5, no. 1, Art. no. 1, Jul. 2015, doi: 10.1038/srep12465. 51. S. Patskovsky, E. Bergeron, and M. Meunier, “Hyperspectral darkfield microscopy of PEGylated gold nanoparticles targeting CD44-expressing cancer cells,” J. Biophotonics, vol. 8, no. 1–2, pp. 162–167, 2015, doi: 10.1002/jbio.201300165. 52. S. Liang et al., “CD44v6 Monoclonal Antibody- Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-like Cells,” Theranostics, vol. 5, no. 9, pp. 970–984, 2015, doi: 10.7150/thno.11632. 53. A. R. Burke et al., “The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy,” Biomaterials, vol. 33, no. 10, pp. 2961– 2970, Apr. 2012, doi: 10.1016/j.biomaterials. 2011.12.052. 54. A. S. Cazet et al., “Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer,” Nat. Commun., vol. 9, no. 1, p. 2897, Jul. 2018, doi: 10.1038/s41467-018-05220-6. 55. M. J. Bissell and D. Radisky, “Putting tumours in context,” Nat. Rev. Cancer, vol. 1, no. 1, pp. 46–54, Oct. 2001, doi: 10.1038/35094059. 56. D. Hong et al., “AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer,” Sci. Transl. Med., vol. 7, no. 314, p. 314ra185, Nov. 2015, doi: 10.1126/scitranslmed. aac5272. 57. A. Tsuyada et al., “CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells,” Cancer Res., vol. 72, no. 11, pp. 2768–2779, Jun. 2012, doi: 10.1158/0008-5472.CAN-11-3567. 58. X. Ding et al., “Effects of NOTCH1 signaling inhibitor γ -secretase inhibitor II on growth of cancer stem cells,” Oncol. Lett., vol. 16, no. 5, pp. 6095–6099, Nov. 2018, doi: 10.3892/ol.2018.9377. 59. S. Zhang et al., “CD133(+)CXCR4(+) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients,” BMC Med., vol. 10, p. 85, Aug. 2012, doi: 10.1186/1741-7015-10-85. 60. M. Huang, Y. Li, H. Zhang, and F. Nan, “Breast cancer stromal fibroblasts promote the generation of CD44+CD24- cells through SDF-1/CXCR4 interaction,” J. Exp. Clin. Cancer Res. CR, vol. 29, no. 1, p. 80, Jun. 2010, doi: 10.1186/1756-9966-29- 80. 61. W. Xiao, Z. Gao, Y. Duan, W. Yuan, and Y. Ke, “Notch signaling plays a crucial role in cancer stem- like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma,” J. Exp. Clin. Cancer Res. CR, vol. 36, no. 1, p. 41, Mar. 2017, doi: 10.1186/s13046-017-0507-3. 25 Year 2023 Global Journal of Medical Research Volume XXIII Issue II Version I ( D ) F © 2023 Global Journals Cancer Stem Cells as the Key to Cancer: Special Emphasis on Prostate Cancer
RkJQdWJsaXNoZXIy NTg4NDg=