Global Journal of Medical Research, F: Diseases, Volume 23 Issue 2
62. D. E. Johnson, R. A. O’Keefe, and J. R. Grandis, “Targeting the IL-6/JAK/STAT3 signalling axis in cancer,” Nat. Rev. Clin. Oncol., vol. 15, no. 4, pp. 234–248, Apr. 2018, doi: 10.1038/nrclinonc.2018.8. 63. K. J. Pienta et al., “Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer,” Invest. New Drugs, vol. 31, no. 3, pp. 760–768, Jun. 2013, doi: 10.1007/s10637-012-9869-8. 64. C. Even et al., “Safety and clinical activity of the Notch inhibitor, crenigacestat (LY3039478), in an open-label phase I trial expansion cohort of advanced or metastatic adenoid cystic carcinoma,” Invest. New Drugs, vol. 38, no. 2, pp. 402–409, Apr. 2020, doi: 10.1007/s10637-019-00739-x. 65. M. W. den Hollander et al., “TGF- β Antibody Uptake in Recurrent High-Grade Glioma Imaged with 89Zr- Fresolimumab PET,” J. Nucl. Med. Off. Publ. Soc. Nucl. Med., vol. 56, no. 9, pp. 1310–1314, Sep. 2015, doi: 10.2967/jnumed.115.154401. 66. M. Todaro et al., “CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis,” Cell Stem Cell, vol. 14, no. 3, pp. 342–356, Mar. 2014, doi: 10.1016/j.stem. 2014.01.009. 67. Y. Cheng et al., “Osteopontin Promotes Colorectal Cancer Cell Invasion and the Stem Cell-Like Properties through the PI3K-AKT-GSK/3 β - β /Catenin Pathway,” Med. Sci. Monit. Int. Med. J. Exp. Clin. Res., vol. 25, pp. 3014–3025, Apr. 2019, doi: 10.12659/MSM.913185. 68. L. Wang et al., “Oncolytic Herpes Simplex Virus and PI3K Inhibitor BKM120 Synergize to Promote Killing of Prostate Cancer Stem-like Cells,” Mol. Ther. Oncolytics, vol. 13, pp. 58–66, Jun. 2019, doi: 10.1016/j.omto.2019.03.008. 69. Y. Liu, X. B. Zhang, J. J. Liu, S. Zhang, and J. Zhang, “[NVP-BKM120 in combination with letrozole inhibit human breast cancer stem cells via PI3K/mTOR pathway],” Zhonghua Yi Xue Za Zhi, vol. 99, no. 14, pp. 1075–1080, Apr. 2019, doi: 10.3760/cma.j.issn.0376-2491.2019.14.008. 70. P. Schöffski et al., “A phase Ib study of pictilisib (GDC-0941) in combination with paclitaxel, with and without bevacizumab or trastuzumab, and with letrozole in advanced breast cancer,” Breast Cancer Res. BCR, vol. 20, no. 1, p. 109, Sep. 2018, doi: 10.1186/s13058-018-1015-x. 71. A. Wicki et al., “First-in human, phase 1, dose- escalation pharmacokinetic and pharmacodynamic study of the oral dual PI3K and mTORC1/2 inhibitor PQR309 in patients with advanced solid tumors (SAKK 67/13),” Eur. J. Cancer Oxf. Engl. 1990, vol. 96, pp. 6–16, Jun. 2018, doi: 10.1016/j.ejca. 2018.03.012. 72. Y. Ando et al., “Phase I study of alpelisib (BYL719), an α -specific PI3K inhibitor, in Japanese patients with advanced solid tumors,” Cancer Sci., vol. 110, no. 3, pp. 1021–1031, Mar. 2019, doi: 10.1111/cas.13923. 73. S. J. Hotte et al., “A Phase II Study of PX-866 in Patients with Recurrent or Metastatic Castration- resistant Prostate Cancer: Canadian Cancer Trials Group Study IND205,” Clin. Genitourin. Cancer, vol. 17, no. 3, pp. 201-208.e1, Jun. 2019, doi: 10.1016/j.clgc.2019.03.005. 74. “Pharmacologic Wnt Inhibition Reduces Proliferation, Survival, and Clonogenicity of Glioblastoma Cells - PubMed.” https:// pubmed.ncbi.nlm.nih.gov/26222502/ (accessed Dec. 29, 2022). 75. Y. Cheng et al., “Wnt-C59 arrests stemness and suppresses growth of nasopharyngeal carcinoma in mice by inhibiting the Wnt pathway in the tumor microenvironment,” Oncotarget, vol. 6, no. 16, pp. 14428–14439, Jun. 2015, doi: 10.18632/ oncotarget.3982. 76. G. Wang et al., “Cyclophilin A Maintains Glioma- Initiating Cell Stemness by Regulating Wnt/ β - Catenin Signaling,” Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res., vol. 23, no. 21, pp. 6640–6649, Nov. 2017, doi: 10.1158/1078-0432.CCR-17-0774. 77. C. Wu, S. Hu, J. Cheng, G. Wang, and K. Tao, “Smoothened antagonist GDC-0449 (Vismodegib) inhibits proliferation and triggers apoptosis in colon cancer cell lines,” Exp. Ther. Med., vol. 13, no. 5, pp. 2529–2536, May 2017, doi: 10.3892/ etm.2017.4282. 78. W. Tong et al., “GANT-61 and GDC-0449 induce apoptosis of prostate cancer stem cells through a GLI-dependent mechanism,” J. Cell. Biochem., vol. 119, no. 4, pp. 3641–3652, Apr. 2018, doi: 10.1002/jcb.26572. 79. G. Valenti et al., “Cancer Stem Cells Regulate Cancer-Associated Fibroblasts via Activation of Hedgehog Signaling in Mammary Gland Tumors,” Cancer Res., vol. 77, no. 8, pp. 2134–2147, Apr. 2017, doi: 10.1158/0008-5472.CAN-15-3490. 80. P. Jagust, B. de Luxán-Delgado, B. Parejo-Alonso, and P. Sancho, “Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells,” Front. Pharmacol., vol. 10, 2019, Accessed: Oct. 27, 2022. [Online]. Available: https://www.frontiersin . org/articles/10.3389/fphar.2019.00203 81. J. Wei, J. Sun, and Y. Liu, “Enhanced targeting of prostate cancer ‑ initiating cells by salinomycin ‑ encapsulated lipid ‑ PLGA nanoparticles linked with CD44 antibodies,” Oncol. Lett., vol. 17, no. 4, pp. 4024–4033, Apr. 2019, doi: 10.3892/ol.2019.10050. 82. L. Yang et al., “Targeting cancer stem cell pathways for cancer therapy,” Signal Transduct. Target. Ther., 26 Year 2023 Global Journal of Medical Research Volume XXIII Issue II Version I ( D ) F © 2023 Global Journals Cancer Stem Cells as the Key to Cancer: Special Emphasis on Prostate Cancer
RkJQdWJsaXNoZXIy NTg4NDg=