Global Journal of Medical Research, K: Interdisciplinary, Volume 22 Issue 3
fraction of municipal solid waste. Applied Ecology and Environmental Research.6: 61-67. www.aloki.hu/pdf/0603_061067.pdf. 26. Reynnells, R., D.T. Ingram, C. Roberts, R. Stonebraker, E.T. Handy, G. Felton, B.T. Vinyard, P.D. Millner, & M. Sharma. 2014. Comparison of U.S. Environmental Protection Agency and U.S. Composting Council Microbial Detection Methods in Finished Compost and Regrowth Potential of Salmonella spp. and Escherichia coli O157:H7 in Finished Compost. Foodborne Pathogens and Disease. 11: doi: 10.1089/fpd.2013.1698. 27. Roman, R., M.M.Marinez, &A.Pantoja. 2015. Famer’s Compost Handbook; Experiences in Latin America. FAO. pp. 1-87. www. fao.org/3/ i3388e/i3388e.pdf. 28. Sasaki, H., J. Nonaka, K. Otawa, O. Kitazume, R. Asano, T. Sasaki, & Y. Nakai. 2009. Analysis of the Structure of the Bacterial Community in the Livestock Manure-Based Composting Process. Asian-Australasian. Journal of Animal Science. 22:113-118. 29. Sawant, A.A., N.V. Hegde, B.A. Straley, S.C. Donaldson, B.C. Love, S.J. Knabel, & B.M. Jayarao. 2007. Antimicrobial-Resistant Enteric Bacteria from Dairy Cattle. Applied and Environmental Microbiology. 73: 156-163. http://dx.doi.org/ 10.1128/AEM.01551-06 30. Schloss, P.D., A.G. Hay, D.B. Wilson, J.M. Gossett, & L.P. Walker. 2005. Quantifying bacterial population dynamics in compost using 16S rRNA gene probes. Applied Microbiology and Biotechnology. 66: 457–463. doi: 10.1007/s00253- 004-1727-y. 31. Sharma, R., F.J. Larney, J. Chen, L.J. Yanke, M. Morrison, E. Topp, T.A. McAllister, & Z. Yu. 2009. Selected antimicrobial resistance during composting of manure from cattle administered sub-therapeutic antimicrobials. Journal of Environmental Quality. 38: 567–575. doi: 10.2134/ jeq2007.0638. 32. Sharma, B., B. Vaish, M. Mahajan, U.K.Singh, P. Singh, & R.P. Singh. 2019. Recycling of Organic Wastes in Agriculture: An Environmental Perspective. International Journal of Environmental Research.13: https://doi.org/10.1007/s41742-019- 00175-y. 33. Stanton, T.B., S.B.Humphrey, & W.C. Stoffregen. 2011. Chlortetracycline-resistant intestinal bacteria in organically raised and feral swine. Applied and Environmental Microbiology. 77: 7167–7170. doi: 10.1128/AEM.00688-11. 34. Smith, S., P. Colgan, F. Yang, E.L. Rieke, M. Soupir, T.B. Moorman, H.K. Allen, & A. Howe. 2019. Investigating the dispersal of antibiotic resistance associated genes from manure application to soil and drainage waters in simulated agricultural farmland systems. PloS ONE.14: e0222470. doi: 10.1371/journal.pone.0222470. 35. Vishan, I., H. Kanekar, & A. Kalamdhad. 2014. Microbial population, stability and maturity analysis of rotary drum composting of water hyacinth. Biologia. 69: 1303—1313. doi: https://doi.org/ 10.2478/s11756-014-0450-0. 36. Wang, L., A. Gutek, S. Grewal, F.C. Michel, Jr., & Z. Yu. 2015. Changes in diversity of cultured bacteria resistant to erythromycin and tetracycline in swine manure during simulated composting and lagoon storage. Letters in Applied Microbiology. 61: 245– 251. doi:10.1111/lam.12450. 37. Watanabe, K. 2008.Application of multiple enzyme restriction fragment length polymorphism analysis and microchip electrophoresis for estimation of antibiotic-tolerant bacterial group. Journal of Pesticide Science. 33: 249–260. https://doi.org/ 10.1584/jpestics.G08-04 38. Watanabe, K., M. Okuda, & N. Koga. 2008. Newly developed system based on multiple enzyme restriction fragment length polymorphism-an application to proteolytic bacterial flora analysis. Soil Science and Plant Nutrition. 54: 204-215. https://doi.org/10.1111/j.1747-0765.2007.00230.x. 39. Watanabe, K. 2009. Detection of protease gene in the field soil applied with liquid livestock feces and speculation of their function and origin. Soil Science and Plant Nutrition. 55: 42-52. doi: https://doi.org/10.1111/j.1747-0765.2008.00323.x 40. Watanabe, K., & N. Koga. 2009. Use of a Microchip Electrophoresis System for Estimation of Bacterial Phylogeny and Analysis of NO3 Reducing Bacterial Flora in Field Soils. Bioscience, Biotechnology, and Biochemistry.73: 479-488. doi: https://doi.org/10. 1271/bbb.70712. 41. Watanabe, K., N. Horinishi, & K. Matumoto, 2015a. Antibiotic-Resistant Bacterial Group in Field Soil Evaluated by a Newly Developed Method Based on Restriction Fragment Length Polymorphism Analysis. Advances in Microbiology. 5:807-816.doi: 10.4236/aim.2015.512085 42. Watanabe, K., N. Horinishi, K. Matumoto, A. Tanaka, & K. Yakushido. 2015b. Bacterial Groups Concerned with Maturing Process in Manure Production Analyzed by a Method Based on Restriction Fragment Length Polymorphism Analysis. Advances in Microbiology. 5:832-841. doi: 10.4236/aim.2015.513088. 43. Watanabe, K., N. Horinishi, K. Matsumoto, A. Tanaka, & K. Yakushido. 2016. A new evaluation method for antibiotic-resistant bacterial groups in environment. Advances in Microbiology. 6:133-151. doi: 10.4236/aim.2016.63014 44. Weidner, S., W. Arnold, & A. Puhler. 1996. Diversity of Uncultured Microorganisms Associated with the Seagrass Halophila stipulacea Estimated by 25 Year 2022 Global Journal of Medical Research Volume XXII Issue III Version I ( D ) K © 2022 Global Journals Dispersion of Multidrug Resistant Bacteria and Fecal Bacteria into Field Soils of Japan through Compost Application
RkJQdWJsaXNoZXIy NTg4NDg=