Global Journal of Researches in Engineering, I: Numerical Methods, Volume 23 Issue 1
For another cosine, for the values -5, -3, -1, 1, 3, 5 the initial data obtained by the formula (17) will have the following form: _2_ cos( ) ≔ 0 + 1 + 2 2 + 3 3 + 4 4 + 5 5 (20) The graphs of these two functions cos (x) and rjad_2_cos(x) and some values of these graphs are shown in Figure 4. Figure 4: Values of the functions - rjad_2_cos (x) and cos (x ) _2_cos (−5) = 0.284 _2_cos (1) = 0.54 cos(−5) = 0.284 cos(1) = 0.54 _2_cos (−3) = −0.99 _2_cos (−3) = −0.99 cos(−3) = −0.99 cos(3) = −0.99 _2_cos (−1) = 0.54 _2_cos (5) = 0.284 cos(−1) = 0.54 cos(5) = 0.284 If we look at the same graphs in other coordinates, we can say that at these points the graphs coincide with their values, and at other points they do not, and they differ significantly. A3 SL _x 0 _n 0 , 0 , ( ) SL _x 1 _n 0 , 0 , ( ) SL _x 2 _n 0 , 0 , ( ) SL _x 3 _n 0 , 0 , ( ) SL _x 4 _n 0 , 0 , ( ) SL _x 5 _n 0 , 0 , ( ) SL _x 0 _n 1 , 0 , ( ) SL _x 1 _n 1 , 0 , ( ) SL _x 2 _n 1 , 0 , ( ) SL _x 3 _n 1 , 0 , ( ) SL _x 4 _n 1 , 0 , ( ) SL _x 5 _n 1 , 0 , ( ) SL _x 0 _n 2 , 0 , ( ) SL _x 1 _n 2 , 0 , ( ) SL _x 2 _n 2 , 0 , ( ) SL _x 3 _n 2 , 0 , ( ) SL _x 4 _n 2 , 0 , ( ) SL _x 5 _n 2 , 0 , ( ) SL _x 0 _n 3 , 0 , ( ) SL _x 1 _n 3 , 0 , ( ) SL _x 2 _n 3 , 0 , ( ) SL _x 3 _n 3 , 0 , ( ) SL _x 4 _n 3 , 0 , ( ) SL _x 5 _n 3 , 0 , ( ) SL _x 0 _n 4 , 0 , ( ) SL _x 1 _n 4 , 0 , ( ) SL _x 2 _n 4 , 0 , ( ) SL _x 3 _n 4 , 0 , ( ) SL _x 4 _n 4 , 0 , ( ) SL _x 5 _n 4 , 0 , ( ) SL _x 0 _n 5 , 0 , ( ) SL _x 1 _n 5 , 0 , ( ) SL _x 2 _n 5 , 0 , ( ) SL _x 3 _n 5 , 0 , ( ) SL _x 4 _n 5 , 0 , ( ) SL _x 5 _n 5 , 0 , ( ) := d A3 1 − B3 ⋅ := 5 − 0 5 2 − 1 − 1 2 cos x( ) rjad_2_cos x( ) 3 − 1 x B3 cos 5 − ( ) cos 3 − ( ) cos 1 − ( ) cos 1( ) cos 3( ) cos 5( ) := _x 5 − 3 − 1 − 1 3 5 := © 2023 Global Journals Global Journal of Researches in Engineering Volume XxXIII Issue I Version I 15 Year 2023 ( ) I Application of Differentialintegral Functions
RkJQdWJsaXNoZXIy NTg4NDg=