Global Journal of Science Frontier Research, A: Physics and Space Science, Volume 22 Issue 1

IV. C onclusion We derived some results, which are: 1. Time exponent n and were own magnitudes about 0.31 until 0.85 in case of Al-8Zn; between 0.44 until 1.22 in case of Al-85Zn alloys. 2. A. E. for first part strain-time were 45.6 while 39.8 kilo joule mole-1 in low- temperature regions for tested alloys and 62.4 and 45.7 KJ/mole in high- temperature regions. 3. (m) coefficient is increase with increasing the working degree. 4. A.E. for second part strain-time were 77.6 while 69.1 kilo joule mole-1 in low- temperature regions for tested alloys and 97.9 and 83.6 KJ/mole in high- temperature regions consecutively, characterizing grain boundary diffusion; therefore, we find at oneself experiments circumstances Aluminum- 85Zinc specimens indicated elevation strain rate concurrence to that of Aluminum -8Zinc. R eferences R éférences R eferencias 1. R. W. Evans, J. D. Parker, and B. Wilshire,Int. J. Pressure Vessels Piping50, 147-160 (1992). 2. R.Fernandez, G.Bruno, and G.Gonzalez-Doncel; Primary and secondary creep in aluminum alloys as a solid statetransformation; JOURNAL OF APPLIED PHYSICS120, 085101 (2016). 3. P. Krizik, M. Balog, M. Nosko, M. V. C. Riglos, J. Dvorak, and O.Bajana,Mater. Sci. Eng. A657, 6–14 (2016). 4. V. Dudko, A. Belyakov, and R. Kaibyshev,Trans. Indian Inst. Met.69(2),223-227 (2016). 5. A. Alizadeh, A. Abdollahi, and H. Biukani,J. Alloys Compd.650,783–793 (2015). 6. W. Blum, in Creep of Aluminium and Aluminium Alloys. Hot Deformation of Aluminium Alloys, edited by T. G. Langdon, H. D. Merchant, J. G. Morris, and M. A. Zaidi (The Minerals, Metals & Materials Society, Warrendale, PA, USA, 1991), pp. 181–209. 7. Eliasson J., Sandstrom R., Applications of Aluminium Matrix Composites, Key Engineering; Materials, Vol. 104-107, pp 3-35, 1995. 8. ASM Handbook, Vol. 19: Fatigue and Fracture, A SM International, Metal Park, Ohio, 1997. 9. Thomas M.P., King J.E., Effect of Thermal and Mechanical Processing on Tensile Properties of Powder Formed 2124 Aluminium and 2124Al-SiCp Metal Matrix Composites, Materials Science and Technology, Vol. 9, pp 742-753, September, 1993. 10. S.R. Holds worth, G. Merckling, Developments in the Assessment of Creep-Rupture Properties ‟ [online]. CCCtp ://www.ommi.co.uk/etd/eccc/ad- vancedcreep/SRHGMpap1.pdf ( Accessed on 25/3/ 2012). 11. Nuclear Research (2010), Nuclear Research Index Section A, Structural Integrity, ttp: //www.hse.gov.uk/ nuclear/nritopics/2012/section-a.pdf. (Accessed on 25/3/2012). 12. Q. Xu. (2000) Development of constitutive equations for creep damage behaviour under multi-axial states of stress. Advances in Mechanical Behaviour, Plasticity and Damage. pp. 1375-1382.v 13. Y. H. Gao; C. Yang; J. Y. Zhang; L. F. Cao; and G. Liu; Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300°C;Materials Research Letters Volume 7, 2019-Issue 1; pp.1-24. 14. PolmearI.J.4-Cast aluminium alloys Light alloys.4th ed. Oxford, UK: Elsevier; 2005. p.205-235. 15. Ovid'koIA, ValievRZ, ZhuYT.Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci.2018;94: 462–540. 16. Knipling KE, Dunand DC, Seidman DN.Criteria for developing castable, creep-resistant aluminum- based alloys–A review. Z Für Met.2006; 97:246–265. 17. WadsworthJ, NiehTG,StephensJJ.Recent advances in aerospace refractorymetal alloys. Int Mater Rev. 1988; 33:131–150. 18. Sherby OD, Burke PM. Mechanical behavior of crystalline solids at elevated temperature. Prog Mater Sci. 1968; 13: 323–390. doi: 10.1016/0079- 6425(68)90024-8. 19. Lumley R N, Morton A J, Polmear I J. Enhanced creep performance in an Al–Cu–Mg–Ag alloy through underageing. Acta Mater.2002;50:3597- 3608. doi:10.1016/S1359-6454(02)00164-7. 20. Hutchinson C R, Fan X, Pennycoo k S J, et al. On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag alloys. Acta Mater.2001;49: 2827–2841. doi:10.1016/S1359-6454(01)00155- 21. Kumar Makineni S, Sugathan S, Meher S, et al. Enhancing elevated temperature strength of copper containing aluminium alloys by forming L12Al3Zr precipitates and nucleating θ′′ precipitates on them. Sci Rep.2017; 7:11154. doi:10.1038/s41598-017- 11540. 22. C hao Lei; Heng L i; Jin Fu; Nian Shi; Gaowei Zheng and Tianjun Bian; Damage in Creep Aging Process of an Al-Zn-Mg-Cu Alloy: Experiments and Modeling; Metals 2018, 8(4), 285 23. Holman, M.C. Autoclave age forming large aluminum aircraft panels. J. Mech. Work. Technol. 1989, 20, 477–488. 24. Liu, L.F.; Zhan, L.H.; Li, W.K. Creep aging behavior characterization of 2219 aluminum alloy. Metals 2016, 6, 146. 25. Xu, Y.Q.; Zhan, L.H. Effect of creep aging process on microstructures and properties of the retrogressed Al–Zn–Mg–Cu alloy. Metals 2016, 6, 189. 26. Li, W.K.; Zhan, L.H.; Liu, L.F.; Xu, Y.Q. The effect of creep aging on the fatigue fracture behavior of 2524 aluminum alloy. Metals 2016, 6, 215. Influence about Zinc for Transient; Steady State Creep Properties, Microstructure and Characteristics in Aluminum Alloys © 2022 Global Journals 1 Year 2022 42 Global Journal of Science Frontier Research Volume XXII Issue ersion I VI ( A ) ε´ st

RkJQdWJsaXNoZXIy NTg4NDg=