Global Journal of Science Frontier Research, A: Physics and Space Science, Volume 22 Issue 1
Technology (ICAIET), 22–24 Nov, Malaysia, pp. 533–538. 3. Basheer N. & Mohammed M., (1998) "Segmentation of Breast Masses in Digital Mammograms Using Adaptive Median Filtering and Texture Analysis", International Journal of Recent Technology and Engineering (IJRTE), Vol. 2, No. 1, pp. 39-43. 4. Bethapudi , P., (1998). ‘Malignant masses in mammograms for detection of breast cancer digital mammography’ in Mammographic Image Processing. , Norwell, MA, Vol 15. 5. Bick, U., Giger, M, L., Schmidt, R, A., Nishikawa, R, M., Wolverton, D, E., & Doi, K. (1997). “Automated Segmentation of Digitized Mammograms”, Academic Radiology, vol. 2, no. 2, pp. 1–9. 6. Dalmiya., (2012). Learning Techniques for Mammogram Classification using wavelet and soft. International Journal of Recent Technology and Engineering (IJRTE), vol. 1, no. 1, pp. 50 – 96. 7. Eklund, G, W., Cardenosa G., & Parsons W. (2001). “Assessing Adequacy of Mammographic Image Quality”, Radiology, vol. 190, pp. 297–307, 8. Giger, M, L., Nishikawa, R, M., & Kupinski,M., (1997). “Computerized Detection of Breast Lesions in Digitized Mammograms and Results with a Clinically-Implemented Intelligent Workstation”, in Computer Assisted Radiology and Surgery, H.U. Lemke, K. Inamura., M.W. Vannier, eds., Elsevier, Berlin, Germany, pp. 325–330. 9. Hassanien, A.., Bader, A., (2003). “A Comparative study on digital mammography: Enhancement algorithms based on Fuzzy Theory”, International Journal of Studies in Informatics and Control, vol. 12, no. 1, pp. 21–31. 10. Kanungo, T., Mount, D, M., Netanyahu, N., Piatko, C., Silverman, R., & Wu, A, Y. (2002). “An efficient k- means clustering algorithm: Analysis and implementation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 881-892. 11. Lou, S, L., Lin, H, D., Lin, K, P., & Hoogstrate, D. (2000). “Automatic Breast Region Extraction from Digital Mammograms for PACS and Telemammo- graphy applications”, Computerized Medical Imaging and Graphics, vol. 24, pp. 205–220. 12. Mary P, S., Vennila, I. (2010). “Optimization Fusion Approach for Image Segmentation Using K-Means Algorithm”, International Journal of Computer Applications (0975 – 8887), Volume 2 – No.7. 13. Mirzaalian, H., Ahmadzadeh, M, R., & Jafari,M.,“Pre- processing Algorithms on Digital Mammograms”, in Proc. of the IAPR Conference on Machine Vision Applications (MVA), Japan, pp. 118–121. 14. Mendez, A, J., Tahoces, P, J., Lado, M, J., Souto, M., Correa, J, L., & Vidal, J, J. (1996). “Automatic Detection of Breast Border and Nipple in Digital Mammograms”, Computer Methods and Programs in Biomedicine, vol. 49, pp. 253–262. 15. Ojala, T., Näppi, J., & Nevalainen, O. (2001). “Accurate Segmentation of the Breast Region from Digitized Mammograms”, Computerized Medical Imaging and Graphics, vol. 25, no. 1, pp. 47–59. 16. Petrick,N., Chan, H,P., Sahiner, B., & Wei, D., (1996). An Adaptive Density-Weighted Contrast Enhancement Filter for Mammographic Breast Mass Detection, IEEE Trans. Med. Image. , Vol.15, pp. 59– 67. 17. Serhat Özekes., (2005). A new method for automated mass detection in digital mammographic images using templates”. ICGST International Journal on Graphics, Vision and Image Processing (GVIP), vol. 1, pp. 12. 18. Thangavel, K., Karnan, M., & Sivakumar, R., (2002). “Automatic Detection of Microcalcification in Mammograms - A Review”, ICGST International Journal on Graphics, Vision and Image Processing (GVIP), vol. 5, no. 5, pp. 23–53. 19. Wirth, A, M., Stapinski, A., (1995-2006). “Segmentation of the breast region in mammograms using active contours”, in Visual Communications and Image Processing. 20. Vyborny, C, J., Yin, F, F., Giger, M, L., Doi, K., Metz, C, E., & Schmidt, R, A. (1991). “Computerized Detection of Masses in Digital Mammograms: Analysis of Bilateral Subtraction Images”, Medical Physics, vol. 18, no. 5, pp. 955–963, 1991. Segmentation of Cancerous Mammography using MATLAB 1 Year 2022 53 © 2022 Global Journals Global Journal of Science Frontier Research Volume XXII Issue ersion I VI ( A )
RkJQdWJsaXNoZXIy NTg4NDg=