Global Journal of Science Frontier Research, A: Physics and Space Science, Volume 23 Issue 11
R eferences R éférences R eferencias 1. Zener C. and Holomon J.H. Effect of Strain Rate Upon Plastic Flow of Steel. // J. Appl. Phys. 1944. Vol.15. No 22. DOI: 10.1063/1. 1707263 2. Wright T.W.The Physics and Mathematics of adiabatic shear bands. UK: Cambridge University Press, 2002. Р . 240. 3. DeCarli P.S., Meyers M.A. In the book: Shock waves and high-strain-rate phenomena in metals. (Ed. by M.A. Meyers, L.E. Murr). Plenum Press. New York and London. 1980 P. 341. 4. Hwang B., Lee S., Kim Y.C., Shin D.G. Microstructural development of adiabatic shear bands in ultra-fine-grained low-carbon steels fabricated by equal channel angular pressing. // Mater. Sci. Eng. A. 2006. No. 441. P. 308-320. DOI: 10.1016/j.msea.2006.08.045. 5. Grady D.E., Asay J. R. Calculation of thermal trapping in shock deformation of aluminum. // J. Appl. Phys. 1982. Vol. 53. No. 11. P. 7350-7354. http://dx.doi.org/10.1063/1.330101. 6. Wang Xue-bin. Calculation of temperature distribution in adiabatic shear band based on gradient-dependent plasticity. // Trans. Nonferrous Met. Soc. China. 2004. Vol. 14. No. 6. P. 1062-1066 7. Lins J.F.C., Sandim H.R.Z., Kestenbach H.J., Raabe D., Vecchio K.S. A microstructural investigation of adiabatic shear bands in interstitial free steel. // Mater. Sci. Eng. A. 2007. Vol. 57. No. 1 and 2. P. 205-218. 8. ChenD.N., FanC.L., XieS.G., HuJ.W., WuS.X., Wang H.R., TaH., YuY.Y. Study on constitutive relation and models for oxygen-free high - conductivity cooper under planer shock tests. // J. Appl. Phys. 2007. Vol. 101. No. 6. P. 205-218 9. Rittel D., Landau P., Venkert A. Recrystallization as a Potential Cause for Adiabatic Shear Failure. // Phys. Rev. Letter. 2008. Vol. 101. P. 165501-05 10. Rittel D., Osovski S.Dynamic failure by adiabatic shear banding. Int. J. Fract. 2010. No. 162. P. 177– 185. https://doi.org/10.1007/s10704-010-9475-8 11. Buravova S.N., Gordopolova I.S., Petrov E.V., Alymov M. I. Features of ultrasonic vibrations during localization of deformation. //ISSN 1028- 3358.Doklady Physics. 2020. Vol. 65. No.2. P.41-45 12. Buravova S. N. and Gordopolov Ju. A. Nature of the Adiabatic Shear Strips Formation. // ISSN 1028- 3358. Doklady Physics. 2007. Vol. 52, N 12. P.666- 669 13. Belikova A.F., Buravova S.N. and Gordopolov Ju. A. A strain localization and its connection with the deformed state of material. // Tech. Phys. 2013. Vol. 58, No. 2. P. 302-304. DOI: 10.1134/S106378421 3020035 14. Belikova A.F., Buravova S.N., Petrov E.V. Localization of deformation under dynamic loads // Tech. Phys. 2013. Vol. 58. No 8. P. 1152-1158. DOI: 10.1134/S10637842130800573 15. Nesterenko V.F., Bondar' M.P. Localization of deformation during the collapse of a thick-walled cylinder. // Comb., Expl., Shock Waves. 1994. Vol. 30. No 4. P. 500-508 16. Zeldovich V.I., Frolova N.Yu., Kheifets F.E. and others. Deformation phenomena during the convergence of metal cylindrical shells. Loss of stability. // Physics of combustion and explosion. 2019. Vol. 55. No. 4. P. 92-102. DOI 10.15372/ FGV20190412 17. Kanel G.I., Razorenov S.V., Utkin A.I., Fortov V.E. Shock wave phenomena in condensed matter. // Moscow: “Janus-K”. P.408 18. Gorelik G.S. Oscillations and waves. Introduction to acoustics, radiophysics and optics. //M.: Fizmatlit. 1959. P. 572 19. Stepanov G.V. Elastic-plastic deformation of materials under the influence of impulse loads. Kyiv: Nauk. Dumka, 1979 20. Buravova S.N., Petrov E.V. Microstructure of metal in spallation plates. //ISSN 1990-7931Russian J. of Physical Chemistry B. 2020. Vol.14. No. 5. P.814- 820. 21. Preece C.M. Cavitation erosion. In C. M. Preece (ed) Erosion/ 1979. Academic Press. New York. P. 208 - 301 22. Buravova S.N. and Gordopolov Yu. A. Cavitation Erosion as Kind of Dynamic Damage. // Int. J. Fracture. 2011. Vol. 170. No. 1. P. 83-93. https:// doi.org/10.1007/s10704-011-9604-z. Damageability of Metals under Impulse Loading 1 Year 2023 33 Frontier Research Volume XXIII Issue ersion I VXI ( A ) Science © 2023 Global Journals Global Journal of and oxidation of fragments, depends on the intensity and duration of sample oscillation. 9. The protective reaction of the material that accompanies the plastic strain localization as a process that induces damage appears as the formation of mass transfer of dispersed particles of the alloying phase, interstitial elements (O, C), and impurities from the matrix material to the zone of localized strain band formation . 10. The mass transfer of particles under pulsed loads is called the self-healing effect, as it has not previously been described in the literature. Mass transfer has a noticeable effect on the microstructure inside the localization bands supplying additional material, which leads to its restructuring. 11. The distances passed by particles during migration under impulse loading are several orders of magnitude higher than those under quasi-static loads. 23. Evans A.G. Impact damage mechanics: Solid particles. In Preece C.M. (ed) Erosion. Academic Press. New York. 1979.
RkJQdWJsaXNoZXIy NTg4NDg=