Global Journal of Science Frontier Research, D: Agriculture and Veterinary, Volume 23 Issue 1

1 Year 2023 43 © 2023 Global Journals Global Journal of Science Frontier Research Volume XXIII Issue ersion I VI ( ) 38. Munns, R., JB. Passioura, TD. Colmer, and CS. Byrt. (2020b). Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytologist 225: 1091–1096. 39. Nar, H., A. Saglam, and R. Terzi. (2009). Leaf rolling and photosystem II. Efficiency in 40. Nassar, I. and R. Horton. (1997). Heat, water, and solute transfer in unsaturated porous media: I - Theory development and transport coefficient evaluation. Transport in Porous Media, 27:17– 38 41. NIDIS (2022). Drought .gov 42. Nwer, B., H. Zurqani and K. Jadour. (2013). Soil productivity rating index model using geographic information system in Libya. In Proceedings of the Annual International Conference 7th Edition of Geotunis, Southern Hammamet, Tunis. 4–12. 43. Peter, A. (2016). Modified conceptual model for compensated root water uptake – a simulation study. J.of Hydrology, 534: 1-10. 44. Schoups, G, EP. Maurer, JW. Hopmans JW. (2010). Climate change impacts on water demand and salinity in California’s irrigated agriculture, Climatic Change. 45. Sci. Rev. 208, 103295. https://doi.org/10.1016/j.earscirev.2020.103295. 46. Simunek, J., M. Sejna, H. Saito, M. Sakai and M. Th. van Genuchten. (2013).The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Version 4.17. Available at Department of Environmental Sciences University of California Riverside, p. 240. Available online at: https://www.pc- progress.com . 47. Simunek, j and J.W. Hopmans. (2009). Modelling compensated root water and nutrient uptake. Ecological Modelling. 22: 505–521. 48. Sposito, G. (2008). The Chemistry of Soils. 2nd edition. Oxford University Press, New York, p. 180, 296,297. 49. Thomas, A, B. K. Yadav and J. Šim ů nek. 2020 Root water uptake under heterogeneous soil moisture conditions: an experimental study for unraveling compensatory root water uptake and hydraulic redistribution. Plant Soil, 457:421–435 50. Tignor, S K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P M. Midgley, eds., Climate Change. (2013): The Physical science basis. Contribution of working group to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 51. Tuna, Al., C. Kaya, D. Higgs, B. Murillo-Amador, S. Aydemir, and AR. Girgin. (2008). Silicon improves salinity tolerance in wheat plants. Environ Exp. Bot., 62:10–16. 52. Tyree, M.T. and M. H. Zimmerman. (2002). Xylem structure and the ascent of sap. 2nd Edn. In Springer Series in Wood Science. Ed. T. Timell. Springer-Verlag, Berlin, 283 p. 53. Wang, X., H. Cai, Z. Zheng, L.Yu, Z.Wang, and L. Li (2020). Modelling root water uptake under deficit irrigation and rewetting in Northwest China. Agronomy Journal, 112:158–174. D The Modified Richard’s Equation for Assessing the Impact of Drought and Salinity in Arid and Semi-Arid Zones. Part Two: A Soil Hydraulic Capacitance

RkJQdWJsaXNoZXIy NTg4NDg=