Global Journal of Science Frontier Research, F: Mathematics and Decision Science, Volume 21 Issue 4

Maximum Distance Separable Codes to Order 10. Ted Hurley, “ Linear complementary dual, maximum distance separable codes ” , arXiv:1901.04241 11. Paul Hurley and Ted Hurley, “ Block codes from matrix and group rings ” , Chapter 5, 159-194, in Selected Topics in Information and Coding Theory , eds. I. Woungang, S. Misra, S.C. Misma, World Scientific 2010. 12. T. Hurley, D. Hurley and B. Hurley, “ Quantum error-correcting codes: the unit design strategy ” , Intl. J. Information and Coding Theory, Vol 5, no. 2, 169-182, 2018. 13. R. Pellikaan, “ On decoding by error location and dependent sets of error positions ” , Discrete Math., Vol. 106/107, 369-381, 1992. 14. T. Hurley, “ Convolutional codes from unit schemes ” , ArXiv 1412.1695, 22 pp., 2016. 15. T. Hurley, “ Solving underdetermined systems with error correcting codes ” , Intl. J. Information and Coding Theory, Vol 4, no. 4, 201-221, 2017. 16. Paul Hurley and Ted Hurley, “ Module codes in group rings ” , ISIT2007, Nice, 2007, 1981-1985. 17. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes , North-Holland, Amsterdam, 1977. 18. R.J. McEliece, Theory of Information and Coding, 2nd ed., Cambridge University Press, 2002. 19. R. J. McEliece, “ A public-key cryptosystem based on algebraic coding theory. ” DSN Progress Report, pp. 114116, 1978. 20. Ashikhmin, and Knill, “ Nonbinary quantum stabilizer codes ” , IEEE Trans. Information Theory, 47, no. 7, 3065-3072, 2001. 21. J. Rosenthal & R. Smarandache, “ Maximum distance separable convolutional codes ” , Appl. Algebra Engrg. Comm. Comput. 10 (1), 15-32, 1999. N otes © 2021 Global Journals 1 Global Journal of Science Frontier Research Volume XXI Issue IV Year 2021 12 ( F ) Version I

RkJQdWJsaXNoZXIy NTg4NDg=