Global Journal of Science Frontier Research, F: Mathematics and Decision Science, Volume 22 Issue 4
N otes Boosting Human Insight by Cooperative AI: Foundations of Shannon-Neumann Logic 1 Year 2022 19 © 2022 Global Journals Global Journal of Science Frontier Research Volume XXII Issue ersion I V IV ( F ) R eferences R éférences R eferencias 1. Leon Sterling L. and Ehud Shapiro E. (1986) The Art of Prolog: Advanced Programming Techniques (MIT Press Series in Logic Programming), MIT Press; First Ed., ISBN-10: 0262192500 ISBN- 13: 978-0262192507 2. Mohri M. (2018) Foundations of Machine Learning , The MIT Press, 2 nd Ed., Cambridge Massachusetts. 3. Hornik, k. et al. (1989) Multilayer feed forward networks are universal approximators, Neural Networks, Vol. 2, Issue 5, Pages 359-366. 4. Guilhoto L. F. (2018) An Overview of Artificial Neural Networks for Mathematicians , Univ. Chicago. 5. Humphreys I. R. et al, (2021) Computed structures of core eukaryotic protein complexes, Science. DOI: 10.1126/science.abm 4805 6. Shannon C. and Weaver W. (1949) The mathematical theory of communications , Univ. Illinois Press. 7. Von Neumann, J. and Morgenstern O. (1944) Theory of Games and Economic Behavior, Princeton University Press: Princeton, NJ. 8. Siregar E., (2021) Learning human insight by cooperative AI: Shannon-Neumann measure, IOP Publishing Ltd., SciNotes, Volume 2, Number 2 9. Nash J. (1953) Two-Person Cooperative Games, Econometrica, Vol. 21, No. 1 (Jan., 1953), pp. 128-140. 10. Russell S. (2019) Human Compatible: Artificial Intelligence and the Problem of Control, Viking, New York. 11. Fromm E. (1994) Escape from freedom, Holt Paperbacks; 1st Edition. 12. Andrews P. B. (2002) An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd ed., Berlin: Kluwer Academic Pub. and Springer. 13. Dyson F., (1949) The radiation theories of Tomonaga, Schwinger and Feynman, Phys. Rev. 75, 486. 14. Guillarmou C., (2020) Conformal bootstrap in Liouville theory, arXiv:2005.11530v2 [ math.PR] 11 Nov 2020. 15. Wilson K. G., (1971) Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture, Phys. Rev. B 4, 3174. 16. Wikipedia: Cabibbo – Kobayashi – Maskawa matrix, m, en.wikipedia. org/wiki/Cabibbo – Kobayashi – Maskawa matrix. 17. Zyla, P.A et al (2020) Review of Particle Physics: CKM quark- mixing matrix, Progress of Theoretical and Experimental Physics . 2020 (8): 083C01. doi: 10.1093/ptep/ptaa104.
RkJQdWJsaXNoZXIy NTg4NDg=