Global Journal of Science Frontier Research, F: Mathematics and Decision Science, Volume 22 Issue 4

19. Li, J. L. (2014). Research on Weapon-target Dynamic Firepower Allocation and combat effectiveness Evaluation. Nanchang Hangkong University . 20. Hahn, P., Grant, T., & Hall, N. (1998). A branch-and-bound algorithm for the quadratic assignment problem based on the Hungarian method. European Journal of Operational Research , 108 (3), 629-640. 21. Kuhn, H. W. (2012). A tale of three eras: The discovery and rediscovery of the Hungarian Method. European Journal of Operational Research , 219 (3), 641-651. 22. E. M. Loiola, N. M. Maia, P. Oswaldo, et al. A survey forthe quadratic assignment problem. European Journal of Operational Research , 2007, 2007(176): 657 – 690. 23. Goldberger, J., & Tassa, T. (2008). A hierarchical clustering algorithm based on the Hungarian method. Pattern Recognition Letters , 29 (11), 1632-1638. 24. Chen, Y. P. P., Promparmote, S., & Maire, F. (2006). MDSM: Microarray database schema matching using the Hungarian method. Information sciences , 176 (19), 2771- 2790. 25. D ü tting, P., Henzinger, M., & Weber, I. (2013). Sponsored search, market equilibria, and the Hungarian Method. Information Processing Letters , 113 (3), 67-73. 26. Kumar, A. (2006). A modified method for solving the unbalanced assignment problems. Applied mathematics and computation , 176 (1), 76-82. 27. Yadaiah, V., & Haragopal, V. V. (2016). A new approach of solving single objective unbalanced assignment problem. American Journal of Operations Research , 6 (01), 81. 28. Betts, N., & Vasko, F. J. (2016). Solving the unbalanced assignment problem: Simpler is better. American Journal of Operations Research , 6 (04), 296. 1 Year 2022 35 © 2022 Global Journals Global Journal of Science Frontier Research Volume XXII Issue ersion I V IV ( F ) An Improved Hungarian Algorithm for a Special Case of Unbalanced Assignment Problems N otes

RkJQdWJsaXNoZXIy NTg4NDg=