Global Journal of Science Frontier Research, F: Mathematics and Decision Science, Volume 23 Issue 4
12. Hu, H., & Tang, J. H. (2007).A classical iteration procedure valid for certain strongly nonlinear oscillators. Journal of sound and vibration , 299 (1-2), 397-402. 13. Ismail, Gamal M., and Hanaa Abu-Zinadah. "Analytic approximations to non-linear third order Jerk equations via modified global error minimization method." Journal of King Saud University-Science 33.1 (2021): 101219. 14. Karahan, MM Fatih. "Approximate solutions for the nonlinear third-order ordinary differential equations." Zeitschrift f ü r Naturforschung A 72.6 (2017): 547-557. 15. Ma, X., Wei, L. and Guo, Z.: He ’ s homotopy perturbation method to periodic solutions of nonlinear jerk equations, J. Sound Vib., vol. 314, pp. 217-227, 2008. 16. Mickens, R. (1984). Comments on the method of harmonic balance. Journal of sound and vibration , 94 (3), 456-460. 17. Mickens, R. E. (1987). Iteration procedure for determining approximate solutions to non-linear oscillator equations. Journal of Sound Vibration , 116 (1), 185-187. 18. Mickens, R. E. (2010). Truly nonlinear oscillations: harmonic balance, parameter expansions, iteration, and averaging methods . World Scientific. 19. Nayfeh, A. H. Perturbation Methods. John Wiley and Sons, New York, 1973. 20. Ozis, T., & Yildirim, A. (2007). Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method. Computers and Mathematics with Applications , 54 (7), 1184-1187. 21. Ramos, J.I.: Analytical and approximate solutions to autonomous, nonlinear, thirdorder ordinary differential equations, Nonlinear Anal. Real., vol. 11, pp. 1613- 1626, 2010. © 2023 Global Journals 1 Year 2023 58 Global Journal of Science Frontier Research Volume XXIII Issue ersion I V ( F ) By an Extended Iteration Method to Adequate Solutions of Jerk Oscillator Containing Displacement Times Velocity Time’s Acceleration and Velocity N otes IV
RkJQdWJsaXNoZXIy NTg4NDg=