Global Journal of Science Frontier Research, G: Bio-Tech & Genetics, Volume 22 Issue 2

than 22 years of age. Am J Surg Pathol 33, 645-658, doi:10.1097/PAS.0b013e3181963c9c (2009). 7. Sinclair, T. J. et al. Pleomorphic myxoid liposarcoma in an adolescent with Li-Fraumeni syndrome. Pediatr Surg Int 33, 631-635, doi:10.1007/s00383-017-4063- x (2017). 8. Cancer Genome Atlas Research Network. Electronic address, e. d. s. c. & Cancer Genome Atlas Research, N. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171, 950-965 e928, doi: 10.1016/ j.cell.2017.10.014 (2017). 9. Antonescu, C. R. The role of genetic testing in soft tissue sarcoma. Histopathology 48, 13-21, doi: 10.1111/j.1365-2559.2005.02285.x (2006). 10. Borden, E. C. et al. Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res 9, 1941-1956 (2003). 11. Eischen, C. M. Genome Stability Requires p53. Cold Spring Harb Perspect Med 6, doi: 10.1101/ cshperspect.a026096 (2016). 12. Ghadimi, M. P. et al. Pleomorphic liposarcoma: clinical observations and molecular variables. Cancer 117, 5359-5369, doi: 10.1002/cncr.26195 (2011). 13. Kanojia, D. et al. Genomic landscape of liposarcoma. Oncotarget 6, 42429-42444, doi: 10.18632/oncotarget.6464 (2015). 14. Wang, Z. et al. High fat diet induces formation of spontaneous liposarcoma in mouse adipose tissue with overexpression of interleukin 22. PLoS One , e23737, doi: 10.1371/journal.pone.0023737 (2011). 15. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat Rev Genet 21, 44-62, doi:10.1038/s41576-019-0171-x (2020). 16. Singer, S. et al. Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 67, 6626-6636, doi: 10.1158/0008- 5472.CAN-07-0584 (2007). 17. Matushansky, I. et al. A developmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas. Am J Pathol 172, 1069-1080, doi:10.2353/ajpath.2008.070284 (2008). 18. Yu, H., Pei, D., Chen, L., Zhou, X. & Zhu, H. Identification of key genes and molecular mechanisms associated with dedifferentiated liposarcoma based on bioinformatic methods. Onco Targets Ther 10, 3017-3027, doi: 10.2147/OTT.S1 32071 (2017). 19. 19 Renner, M. et al. Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas. Genome Biol 14, r137, doi: 10.1186/gb-2013-14-12-r137 (2013). 20. Suh, Y. H. et al. Ectopic expression of Neuronatin potentiates adipogenesis through enhanced phosphorylation of cAMP-response element-binding protein in 3T3-L1 cells. Biochem Biophys Res Commun 337, 481-489, doi: 10.1016/j.bbrc.2005.09. 078 (2005). 21. 21 Thelin-Jarnum, S., Lassen, C., Panagopoulos, I., Mandahl, N. & Aman, P. Identification of genes differentially expressed in TLS-CHOP carrying myxoid liposarcomas. Int J Cancer 83, 30-33, doi:10.1002/(sici)1097-0215(19990924)83:1<30:: aid-ijc6 >3.0.co ;2-4 (1999). 22. 22 Dalal, K. M., Kattan, M. W., Antonescu, C. R., Brennan, M. F. & Singer, S. Subtype specific prognostic nomogram for patients with primary liposarcoma of the retroperitoneum, extremity, or trunk. Ann Surg 244, 381-391, doi: 10.1097/01. sla.0000234795.98607.00 (2006). 23. Kleinerman, R. A., Schonfeld, S. J. & Tucker, M. A. Sarcomas in hereditary retinoblastoma. Clin Sarcoma Res 2, 15, doi: 10.1186/2045-3329-2-15 (2012). 24. Li, F. P. et al. A cancer family syndrome in twenty- four kindreds. Cancer Res 48, 5358-5362 (1988). 25. Kleihues, P., Schauble, B., zur Hausen, A., Esteve, J. & Ohgaki, H. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150, 1-13 (1997). 26. Liu, G. et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36, 63-68, doi: 10.1038/ng1282 (2004). 27. Harvey, M. et al. A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53-deficient mice. Nat Genet 9, 305-311, doi: 10.1038/ng0395-305 (1995). 28. McCoy, A., Besch-Williford, C. L., Franklin, C. L., Weinstein, E. J. & Cui, X. Creation and preliminary characterization of a Tp53 knockout rat. Dis Model Mech 6, 269-278, doi:10.1242/dmm.009704 (2013). 29. Hermsen, R. et al. Lack of major genome instability in tumors of p53 null rats. PLoS One 10, e0122066, doi: 10.1371/journal.pone.0122066 (2015). 30. Van Boxtel, R. et al. Homozygous and heterozygous p53 knockout rats develop metastasizing sarcomas with high frequency. Am J Pathol 179, 1616-1622, doi:10.1016/j.ajpath. 2011. 06.036 (2011). 31. Harvey, M., Vogel, H., Lee, E. Y., Bradley, A. & Donehower, L. A. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 55, 1146 -1151 (1995). 32. Puzio-Kuter, A. M. et al. Involvement of tumor suppressors PTEN and p53 in the formation of multiple subtypes of liposarcoma. Cell Death Differ 22, 1785 - 1791, doi: 10.1038/cdd.2015.27 (2015). 33. Guijarro, M. V. et al. Dual Pten/Tp53 suppression promotes sarcoma progression by activating Notch 1 Year 2022 27 © 2022 Global Journals Global Journal of Science Frontier Research Volume XXII Issue ersion I VII ( G ) The Genomics of Liposarcoma: A Review and Commentary 6

RkJQdWJsaXNoZXIy NTg4NDg=