Global Journal of Science Frontier Research, G: Bio-Tech & Genetics, Volume 22 Issue 2

Virchows Arch 456, 167-179, doi:10.1007/s00428- 009-0815-x (2010). 58. Micci, F., Teixeira, M. R., Bjerkehagen, B. & Heim, S. Characterization of supernumerary rings and giant marker chromosomes in well-differentiated lipomatous tumors by a combination of G-banding, CGH, M-FISH, and chromosome- and locus- specific FISH. Cytogenet Genome Res 97, 13-19, doi: 10.1159/000064038 (2002). 59. Garsed, D. W. et al. The architecture and evolution of cancer neochromosomes. Cancer Cell 26, 653- 667, doi:10.1016/j.ccell.2014.09.010 (2014). 60. Rieker, R. J. et al. Genomic profiling reveals subsets of dedifferentiated liposarcoma to follow separate molecular pathways. Virchows Arch 456, 277-285, doi:10.1007/s00428-009-0869-9 (2010). 61. Dei Tos, A. P. et al. Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J Pathol 190, 531-536, doi: 10.1002/(SICI)1096-9896(200004)190: 5<531::AID-PATH579 >3.0.CO ;2-W (2000). 62. Pedeutour, F. et al. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 24, 30-41 (1999). 63. Koczkowska, M. et al. Application of high-resolution genomic profiling in the differential diagnosis of liposarcoma. Mol Cytogenet 10, 7, doi: 10.1186/s 13039-017-0309-5 (2017). 64. Erickson-Johnson, M. R. et al. Carboxypeptidase M: a biomarker for the discrimination of well- differentiated liposarcoma from lipoma. Mod Pathol 22, 1541-1547, doi: 10.1038/modpathol.2009.149 (2009). 65. Wang, M. et al. Extrachromosomal Circular DNAs: Origin, formation and emerging function in Cancer. Int J Biol Sci 17, 1010-1025, doi: 10.7150/ijbs.54614 (2021). 66. Taylor, B. S. et al. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas. Cancer Discov 1, 587-597, doi: 10.1158 /2159-8290.CD- 11- 0181 (2011). 67. Kim, H. et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat Genet 52, 891-897, doi: 10.1038/s41588-020-0678-2 (2020). 68. Yi, E. et al. Live-Cell Imaging Shows Uneven Segregation of Extrachromosomal DNA Elements and Transcriptionally Active Extrachromosomal DNA Hubs in Cancer. Cancer Discov 12, 468-483, doi: 10.1158 /2159-8290.CD- 21-1376 (2022). 69. Zhang, Y. et al. Heterogeneity and immuno- phenotypic plasticity of malignant cells in human liposarcomas. Stem Cell Res 11, 772-781, doi: 10.1016/j.scr.2013.04.011 (2013). 70. Tyler, R. et al. A review of retroperitoneal liposarcoma genomics. Cancer Treat Rev 86, 102013, doi: 10.1016/j.ctrv.2020.102013 (2020). 71. Hallenborg, P. et al. Mdm2 controls CREB- dependent transactivation and initiation of adipocyte differentiation. Cell Death Differ 19, 1381-1389, doi:10.1038/cdd.2012.15 (2012). 72. Zhao, W. et al. Murine double minute 2 aggravates adipose tissue dysfunction through ubiquitin- mediated six-transmembrane epithelial antigen of prostate 4 degradation. iScience 25, 104544, doi:10.1016/j.isci.2022.104544 (2022). 73. Liu, Z. J., Zhuge, Y. & Velazquez, O. C. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem 106, 984-991, doi:10.1002/jcb.22091 (2009). 74. Ambele, M. A., Dessels, C., Durandt, C. & Pepper, M. S. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Res 16, 725-734, doi: 10.1016/j.scr.2016.04.011 (2016). 75. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR- Cas9 essentiality screens in cancer cells. Nat Genet 49, 1779-1784, doi: 10.1038/ng.3984 (2017). 76. Dempster, J. M. et al. Extracting Biological Insights from the Project Achilles Genome-Scale CRISPR Screens in Cancer Cell Lines. bioRxiv , 720243, doi: 10.1101/720243 (2019). 77. Ron, D. & Habener, J. F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 6, 439-453, doi: 10.1101/gad.6.3.439 (1992). 78. Engstrom, K. et al. The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am J Pathol 168, 1642-1653, doi: 10.2353/ajpath.2006.050872 (2006). 79. Kabjorn Gustafsson, C., Engstrom, K. & Aman, P. DDIT3 Expression in Liposarcoma Development. Sarcoma 2014, 954671, doi: 10.1155/2014/954671 (2014). 80. Batchvarova, N., Wang, X. Z. & Ron, D. Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO J 14, 4654-4661 (1995). 81. Lim, Y. P., Low, B. C., Lim, J., Wong, E. S. & Guy, G. R. Association of atypical protein kinase C isotypes with the docker protein FRS2 in fibroblast growth factor signaling. J Biol Chem 274, 19025-19034, doi:10.1074/jbc.274.27.19025 (1999). 82. Kahkonen, T. E. et al. Role of fibroblast growth factor receptors (FGFR) and FGFR like-1 (FGFRL1) 1 Year 2022 29 © 2022 Global Journals Global Journal of Science Frontier Research Volume XXII Issue ersion I VII ( G ) The Genomics of Liposarcoma: A Review and Commentary

RkJQdWJsaXNoZXIy NTg4NDg=