Global Journal of Science Frontier Research, G: Bio-Tech & Genetics, Volume 22 Issue 2

in mesenchymal stromal cell differentiation to osteoblasts and adipocytes. Mol Cell Endocrinol 461, 194-204, doi: 10.1016/j.mce.2017.09.015 (2018). 83. Patel, N. G., Kumar, S. & Eggo, M. C. Essential role of fibroblast growth factor signaling in preadipoctye differentiation. J Clin Endocrinol Metab 90, 1226- 1232, doi: 10.1210/jc.2004-1309 (2005). 84. Hutley, L. et al. Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes 53, 3097-3106, doi: 10.2337/diabetes.53.12.3097 (2004). 85. Le Blanc, S., Simann, M., Jakob, F., Schutze, N. & Schilling, T. Fibroblast growth factors 1 and 2 inhibit adipogenesis of human bone marrow stromal cells in 3D collagen gels. Exp Cell Res 338, 136-148, doi: 10.1016/j.yexcr.2015.09.009 (2015). 86. Rogalla, P. et al. HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am J Pathol 149, 775-779 (1996). 87. Gattas, G. J., Quade, B. J., Nowak, R. A. & Morton, C. C. HMGIC expression in human adult and fetal tissues and in uterine leiomyomata. Genes Chromosomes Cancer 25, 316-322 (1999). 88. Xi, Y. et al. HMGA2 promotes adipogenesis by activating C/EBPbeta-mediated expression of PPARgamma. Biochem Biophys Res Commun 472, 617-623, doi: 10.1016/j.bbrc.2016.03.015 (2016). 89. Thies, H. W. et al. Permanent activation of HMGA2 in lipomas mimics its temporal physiological activation linked to the gain of adipose tissue. Obesity (Silver Spring) 22, 141 -150, doi: 10.1002/ oby. 20137 (2014). 90. Fedele, M. et al. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 9, 459-471, doi: 10.1016/j.ccr.2006.04.024 (2006). 91. Battista, S. et al. The expression of a truncated HMGI-C gene induces gigantism associated with lipomatosis. Cancer Res 59, 4793-4797 (1999). 92. Ligon, A. H. et al. Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am J Hum Genet 76, 340-348, doi: 10.1086/427565 (2005). 93. Jung, H. et al. Involvement of PTP-RQ in differentiation during adipogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun 383, 252-257, doi: 10.1016/j.bbrc.2009. 04.001 (2009). 94. Park, J. H. & Roeder, R. G. GAS41 is required for repression of the p53 tumor suppressor pathway during normal cellular proliferation. Mol Cell Biol 26, 4006-4016, doi:10.1128/MCB.02185-05 (2006). 95. Pikor, L. A. et al. YEATS4 is a novel oncogene amplified in non-small cell lung cancer that regulates the p53 pathway. Cancer Res 73, 7301- 7312, doi: 10.1158/0008-5472.CAN-13-1897 (2013). 96. Crago, A. M. et al. Copy number losses define subgroups of dedifferentiated liposarcoma with poor prognosis and genomic instability. Clin Cancer Res 18, 1334-1340, doi: 10.1158/1078-0432.CCR- 11-2820 (2012). 97. Mariani, O. et al. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 11, 361- 374, doi: 10.1016/j.ccr.2007.02.007 (2007). 98. Fullenkamp, C. A. et al. TAZ and YAP are frequently activated oncoproteins in sarcomas. Oncotarget 7, 30094-30108, doi: 10.18632/oncotarget.8979 (2016). 99. Seo, E. et al. SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage. Cell Rep 3, 2075-2087, doi: 10.1016/ j.celrep.2013.05.029 (2013). 100. Egan, J. B. et al. Whole genome analyses of a well- differentiated liposarcoma reveals novel SYT1 and DDR2 rearrangements. PLoS One 9, e87113, doi:10.1371/journal.pone.0087113 (2014). 101. Tap, W. D. et al. Evaluation of well-differentiated/de- differentiated liposarcomas by high-resolution oligonucleotide array-based comparative genomic hybridization. Genes Chromosomes Cancer 50, 95- 112, doi: 10.1002/gcc.20835 (2011). 102. Fletcher, C. D. M., Bridge, J. A., Hogendoorn, P. & Mertens, F. WHO Classification of Tumours of Soft Tissue and Bone . 4th edn, (WHO Press, 2013). 103. Cheng, H. et al. Validation of immature adipogenic status and identification of prognostic biomarkers in myxoid liposarcoma using tissue microarrays. Hum Pathol 40, 1244-1251, doi: 10.1016/j.humpath.2009. 01.011 (2009). 104. Smith, T. A., Easley, K. A. & Goldblum, J. R. Myxoid/round cell liposarcoma of the extremities. A clinicopathologic study of 29 cases with particular attention to extent of round cell liposarcoma. Am J Surg Pathol 20, 171-180 (1996). 105. Fritchie, K. J. et al. The expanded histologic spectrum of myxoid liposarcoma with an emphasis on newly described patterns: implications for diagnosis on small biopsy specimens. Am J Clin Pathol 137, 229-239, doi: 10.1309/AJCP90YNOK BAGCDM (2012). 106. Aman, P. et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 5, 278-285 (1992). 107. Powers, M. P. et al. Detection of myxoid liposarcoma-associated FUS-DDIT3 rearrangement variants including a newly identified breakpoint using an optimized RT-PCR assay. Mod Pathol 23, 1307-1315, doi: 10.1038/modpathol.2010.118 (2010). © 2022 Global Journals 1 Year 2022 30 Global Journal of Science Frontier Research Volume XXII Issue ersion I VII ( G ) The Genomics of Liposarcoma: A Review and Commentary

RkJQdWJsaXNoZXIy NTg4NDg=