Global Journal of Science Frontier Research, G: Bio-Tech & Genetics, Volume 22 Issue 2

108. Crozat, A., Aman, P., Mandahl, N. & Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363, 640-644, doi: 10.1038/363640a0 (1993). 109. Riggi, N. et al. Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res 66, 7016-7023, doi: 10.1158/0008-5472. CAN-05-3979 (2006). 110. Perez-Mancera, P. A. et al. FUS-DDIT3 prevents the development of adipocytic precursors in liposarcoma by repressing PPARgamma and C/EBPalpha and activating eIF4E. PLoS One 3, e2569, doi: 10.1371/journal.pone.0002569 (2008). 111. Trautmann, M. et al. FUS-DDIT3 Fusion Protein- Driven IGF-IR Signaling is a Therapeutic Target in Myxoid Liposarcoma. Clin Cancer Res 23, 6227- 6238, doi:10.1158/1078-0432.CCR-17-0130 (2017). 112. Borjigin, N. et al. TLS-CHOP represses miR-486 expression, inducing upregulation of a metastasis regulator PAI-1 in human myxoid liposarcoma. Biochem Biophys Res Commun 427, 355-360, doi: 10.1016/j.bbrc.2012.09.063 (2012). 113. Pilotti, S. et al. Limited role of TP53 and TP53-related genes in myxoid liposarcoma. Tumori 84, 571-577 (1998). 114. Bode-Lesniewska, B. et al. Relevance of translocation type in myxoid liposarcoma and identification of a novel EWSR1-DDIT3 fusion. Genes Chromosomes Cancer 46, 961-971, doi: 10.1002/gcc.20478 (2007). 115. Zinszner, H., Albalat, R. & Ron, D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 8, 2513-2526, doi: 10.1101/gad.8.21. 2513 (1994). 116. Kovar, H. Dr. Jekyll and Mr. Hyde: The Two Faces of the FUS/EWS/TAF15 Protein Family. Sarcoma 2011, 837474, doi: 10.1155/2011/837474 (2011). 117. Pahlich, S., Quero, L., Roschitzki, B., Leemann- Zakaryan, R. P. & Gehring, H. Analysis of Ewing sarcoma (EWS)-binding proteins: interaction with hnRNP M, U, and RNA-helicases p68/72 within protein-RNA complexes. J Proteome Res 8, 4455- 4465, doi:10.1021/pr900235t (2009). 118. Takahama, K., Kino, K., Arai, S., Kurokawa, R. & Oyoshi, T. Identification of Ewing's sarcoma protein as a G-quadruplex DNA- and RNA-binding protein. FEBS J 278, 988-998, doi: 10.1111/j.1742-4658. 2011.08020.x (2011). 119. Dormann, D. et al. Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J 31, 4258-4275, doi: 10.1038/emboj.2012.261 (2012). 120. Waters, B. L., Panagopoulos, I. & Allen, E. F. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 121, 109-116 (2000). 121. Raddaoui, E., Donner, L. R. & Panagopoulos, I. Fusion of the FUS and ATF1 genes in a large, deep- seated angiomatoid fibrous histiocytoma. Diagn Mol Pathol 11, 157-162 (2002). 122. Ichikawa, H., Shimizu, K., Hayashi, Y. & Ohki, M. An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 54, 2865- 2868 (1994). 123. Panagopoulos, I. et al. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21) (p11;q22). Genes Chromosomes Cancer 11, 256- 262 (1994). 124. Storlazzi, C. T. et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet 12, 2349-2358, doi: 10.1093/hmg/ddg237 (2003). 125. Huang, S. C. et al. Novel FUS-KLF17 and EWSR1- KLF17 fusions in myoepithelial tumors. Genes Chromosomes Cancer 54, 267-275, doi: 10.1002/ gcc.22240 (2015). 126. Turc-Carel, C. et al. Chromosomes in Ewing's sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet 32, 229-238, doi: 10.1016/0165- 4608(88)90285-3 (1988). 127. Ladanyi, M. & Gerald, W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 54, 2837-2840 (1994). 128. Kwiatkowski, T. J., Jr. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205- 1208, doi:10.1126/science.1166066 (2009). 129. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208-1211, doi: 10.1126/science.1165942 (2009). 130. Rademakers, R. et al. Fus gene mutations in familial and sporadic amyotrophic lateral sclerosis. Muscle Nerve 42, 170-176, doi:10.1002/mus.21665 (2010). 131. Yang, L. et al. Subcellular localization and RNAs determine FUS architecture in different cellular compartments. Hum Mol Genet 24, 5174-5183, doi: 10.1093/hmg/ddv239 (2015). 132. Hemminger, J. A. & Iwenofu, O. H. NY-ESO-1 is a sensitive and specific immunohistochemical marker for myxoid and round cell liposarcomas among related mesenchymal myxoid neoplasms. Mod Pathol 26, 1204-1210, doi: 10.1038/modpathol. 2013.65 (2013). 133. Demicco, E. G. et al. Involvement of the PI3K/Akt pathway in myxoid/round cell liposarcoma. Mod Pathol 25, 212-221, doi: 10.1038/modpathol.2011. 148 (2012). 1 Year 2022 3 © 2022 Global Journals Global Journal of Science Frontier Research Volume XXII Issue ersion I VII ( G ) The Genomics of Liposarcoma: A Review and Commentary

RkJQdWJsaXNoZXIy NTg4NDg=