Global Journal of Science Frontier Research, G: Bio-Tech & Genetics, Volume 22 Issue 2
134. Barretina, J. et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 42, 715-721, doi: 10.1038/ng.619 (2010). 135. Oda, Y. et al. Frequent alteration of p16(INK4a)/p14(ARF) and p53 pathways in the round cell component of myxoid/round cell liposarcoma: p53 gene alterations and reduced p14(ARF) expression both correlate with poor prognosis. J Pathol 207, 410-421, doi: 10.1002/ path.1848 (2005). 136. Davidovic, R. et al. p14(ARF) methylation is a common event in the pathogenesis and progression of myxoid and pleomorphic liposarcoma. Med Oncol 30, 682, doi: 10.1007/s12032-013-0682-9 (2013). 137. Sievers, S. et al. Hypermethylation of the APC promoter but lack of APC mutations in myxoid/round-cell liposarcoma. Int J Cancer 119, 2347-2352, doi: 10.1002/ijc.22117 (2006). 138. Downes, K. A., Goldblum, J. R., Montgomery, E. A. & Fisher, C. Pleomorphic liposarcoma: a clinicopathologic analysis of 19 cases. Mod Pathol 14, 179-184, doi: 10.1038/modpathol.3880280 (2001). 139. Oliveira, A. M. & Nascimento, A. G. Pleomorphic liposarcoma. Semin Diagn Pathol 18, 274-285 (2001). 140. Nishio, J. Contributions of Cytogenetics and Molecular Cytogenetics to the Diagnosis of Adipocytic Tumors. Journal of Biomedicine and Biotechnology 2011, 9, doi: 10.1155/2011/524067 (2011). 141. Schmidt, H. et al. Gains of 13q are correlated with a poor prognosis in liposarcoma. Mod Pathol 18, 638- 644, doi: 10.1038/modpathol.3800326 (2005). 142. Rieker, R. J. et al. Distinct chromosomal imbalances in pleomorphic and in high-grade dedifferentiated liposarcomas. Int J Cancer 99, 68-73, doi: 10.1002/ ijc.10287 (2002). 143. Idbaih, A. et al. Myxoid malignant fibrous histiocytoma and pleomorphic liposarcoma share very similar genomic imbalances. Lab Invest 85, 176- 181, doi: 10.1038/labinvest.3700202 (2005). 144. Mertens, F. et al. Cytogenetic analysis of 46 pleomorphic soft tissue sarcomas and correlation with morphologic and clinical features: a report of the CHAMP Study Group. Chromosomes and MorPhology. Genes Chromosomes Cancer 22, 16- 25 (1998). 145. Mardi, K. & Gupta, N. Primary pleomorphic liposarcoma of breast: a rare case report. Indian J Pathol Microbiol 54, 124-126, doi:10.4103/0377- 4929.77361 (2011). 146. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201, doi: 10.1016/j.cell.2015.04.044 (2015). 147. Macosko, E. Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161, 1202-1214, doi: 10.1016/j.cell.2015.05.002 (2015). 148. Leighton, J., Hu, M., Sei, E., Meric-Bernstam, F. & Navin, N. E. Reconstructing mutational lineages in breast cancer by multi-patient-targeted single cell DNA sequencing. bioRxiv , 2021.2011.2016.468877, doi: 10.1101/2021.11.16.468877 (2021). 149. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401, doi: 10.1126/science. 1254257 (2014). 150. Boen, J., Wagner, J. P. & Di Nanni, N. Inferring copy number variation from gene expression data: methods, comparisons, and applications to oncology. bioRxiv , 2021. 2010.2018.463991, doi: 10.1101/2021.10.18.463991 (2021). 151. Serin Harmanci, A., Harmanci, A. O. & Zhou, X. CaSpER identifies and visualizes CNV events by integrative analysis of single-cell or bulk RNA- sequencing data. Nat Commun 11, 89, doi: 10.1038/s41467-019-13779-x (2020). 152. Gao, R. et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat Biotechnol 39, 599-608, doi: 10.1038/s41587-020-00795-2 (2021). 153. Jerby-Arnon, L. et al. Opposing immune and genetic mechanisms shape oncogenic programs in synovial sarcoma. Nat Med 27, 289-300, doi: 10.1038/s 41591-020-01212-6 (2021). 154. Slyper, M. et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat Med 26, 792-802, doi: 10.1038/s41591- 020-0844-1 (2020). 155. Rajbhandari, P. et al. Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes. Elife 8, doi: 10.7554/eLife.49501 (2019). 156. Sarvari, A. K. et al. Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at Single-Nucleus Resolution. Cell Metab 33, 437-453 e435, doi: 10.1016/j.cmet.2020.12.004 (2021). 157. Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98-102, doi: 10.1038/s41586-020-2856-x (2020). 158. Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926-933, doi: 10.1038/s41586-022-04518-2 (2022). 159. Coombs, C. C., Dickherber, T. & Crompton, B. D. Chasing ctDNA in Patients With Sarcoma. Am Soc Clin Oncol Educ Book 40, e351-e360, doi: 10.1200/ EDBK_280749 (2020). © 2022 Global Journals 1 Year 2022 32 Global Journal of Science Frontier Research Volume XXII Issue ersion I VII ( G ) The Genomics of Liposarcoma: A Review and Commentary
RkJQdWJsaXNoZXIy NTg4NDg=