Global Journal of Science Frontier Research, G: Bio-Tech & Genetics, Volume 22 Issue 2
21 1785 1864 0.957618 0258 18 2232 2317 0.963314 631 31 1236 1272 0.9716981 132 21 1749 2055 0.851094 8905 18 2193 2511 0.873357 2282 31 1057 1362 0.7760646 109 34 1038 1121 0.925958 9652 29 1261 1264 0.997626 5823 50 607 623 0.9743178 17 34 853 1121 0.760927 7431 29 1101 1298 0.848228 0431 50 419 566 0.7402826 855 55 538 507 1.061143 984 47 719 697 1.031563 845 81 221 212 1.0424528 3 55 358 438 0.817351 5982 47 491 710 0.691549 2958 81 172 177 0.9717514 124 89 195 179 1.089385 475 76 265 237 1.118143 46 131 37 38 0.9736842 105 89 105 122 0.860655 7377 76 188 212 0.886792 4528 131 17 19 0.8947368 421 Figure 5: Comparing TC/AG Fibonacci, Lucas and FibLuc distances in real and synthetic YEAST Chromosome XII PCRTags ( regular-reverse distances weighted by the length of the genome, see detailed data in suplementary materials ). V. C onclusions In all the cases analyzed here, we find that the real genomes or chromosomes have a property of coherence, consistency and unity that our method highlights. This property disappears in almost all (ALL) studied cases of synthetic genomes or chromosomes. Transposons: a possible explanation of global harmonics structure In (Weiming Zhang, 2017), authors write «RATIONALE: The synthetic yeast genome, designated Sc2.0, was designed according to a set of arbitrary rules, including the elimination of transposable elements and incorporation of specific DNA elements to facilitate further genome manipulation.» 1 Year 2022 43 © 2022 Global Journals Global Journal of Science Frontier Research Volume XXII Issue ersion I VII ( G ) Epigenetics Theoretical Limits of Synthetic Genomes: The Cases of Artificials Caulobacter ( C. eth-2.0), Mycoplasma Mycoides (JCVI-Syn 1.0, JCVI-Syn 3.0 and JCVI_3A), E-coli and YEAST chr XII
RkJQdWJsaXNoZXIy NTg4NDg=