Global Journal of Science Frontier Research, G: Bio-Tech & Genetics, Volume 22 Issue 2
© 2022 Global Journals 1 Year 2022 74 Global Journal of Science Frontier Research Volume XXII Issue ersion I VII ( G ) Physiological and Molecular basis of Dormancy in Yam Tuber: A Way Forward towards Genetic Manipulation of Dormancy in Yam Tubers Arabidopsis thaliana. . Plant Mol Biol 2009; 69: 745– 59. 167. Baena-González E, Rolland F, Thevelein JM, Sheen J. A central integrator of transcription networks in plant stress and energy signalling. Nature communications. 2007; 448: 938–42. 168. Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt MT. rehalose metabolism in plants. Plant J 2014; 79:544–67. 169. Nunes C, O’Hara L, E. , Primavesi L, F. , Delatte T, L., Schluepmann H, Somsen GW, et al. The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery fol- lowing relief of sink limitation. Plant Physiol 2013;162: 1720–32. 170. Hanson J, Baena-Gonzalez E. Shaping plant development through the SnRK1-TOR metabolic regulators. Curr Opin Plant Biol. 2017;35:152-7. 171. Moreau M, Azzopardi M, Clément G, Dobrenel T, Marchive C, Renne C, et al. Mutations in the Arabidopsis homolog of LST8/GbL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and met- abolic adaptation to long days. . Plant Cell 2012;24(463–481). 172. Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolaï M, et al. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. . EMBO Rep 2007;8(864–870). 173. Radchuk R, Emery RJN, Weier D, Vigeolas H, Geigenberger P, Lunn JE, et al. Sucrose non- fermenting kinase 1 (SnRK1) coordinates metabolic and hormonal signals during pea cot- yledon growth and differentiation. Plant J 2010;61:324–38. 174. Radchuk R, Radchuk V, Weschke W, Borisjuk L, Weber H. Re- pressing the expression of the Sucrose Nonfermenting-1- Related Protein Kinase gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype. Plant Physiol 2006;140:263–78. 175. Ljung K, Nemhauser JL, Perata P. New mechanistic links between sugar and hormone signalling networks. Curr Opin Plant Biol. 2015;25:130-7. 176. Yuan TT, Xu HH, Zhang KX, Guo TT, Lu YT. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ. 2014; 37(6):1338-50. 177. Leon P, Sheen J. Sugar and hormone connections. Trends in plant science. 2003; 8:110–6. 178. Gibson SI. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol. 2005;8(1):93-102. 179. Brocard-Gifford IM, Lynch TJ, Finkelstein RR. Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiol 2003;131:78-92. 180. Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, P. L. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6,reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 2000;14: 2085-96. 181. Kang S, Pacold M, Cervantes C, Lim D, Lou H, Ottina K, et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 2013;341: 1236566. 182. Rook F CF, Card R, Munz G, Smith C, Bevan MW: Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 2001;26:421-33. 183. Yoshida K, T. , Fujiwara T, Naito S. The synergistic effects of sugar and abscisic acid on myo-inositol-1- phosphate synthase expression. Physiol Plant 2002;114:581-7. 184. Sairanen I, Novak O, Pencik A, Ikeda Y, Jones B, Sandberg G, et al. Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 2012;24:4907-16. 185. Lilley J, Gee C, Sairanen I, Ljung K, Nemhauser J. An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation. Plant Physiol. 2012; 160:2261-70. 186. Le C, Schmelz E, Chourey P. Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol 2010; 153:306-18. 187. Covington M, Harmer S. The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol 2007; 5.(e222). 188. Sagar M, Chervin C, Mila I, Hao Y, Roustan JP, Benichou M, et al. SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol 2013; 161:1362–74. 189. Kushwah S, Laxmi A. The interaction between glucose and cytokinin signal transduction pathway in Arabidopsis thaliana. Plant Cell Environ 2014;37:235-53. 190. Li Y, Van den EW, Rolland F. Sucrose induction of anthocyanin biosynthesis is mediated by DELLA. Mol Plant. 2014;7:570-2. 191. Werner T, Holst K, Pors Y, Guivarc’h A, Mustroph A, Chriqui D, et al. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J Exp Bot 2008; 59:2659-72. 192. Arana MV, Marín-de la Rosa N, Maloof JN, Blázquez MA, Alabadí D. Circadian oscillation of gibberellin signaling in Arabidopsis. Proceedings of the National Academy of Sciences. 2011; 108(22): 9292-7. 193. Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 2006;140(637-646).
RkJQdWJsaXNoZXIy NTg4NDg=