Global Journal of Science Frontier Research, H: Environment & Earth Science, Volume 23 Issue 2
8. Ahmed SF,Mofijur M, NuzhatS, Chowdhury AT, Rafa N, Uddin MdA, Inayat A, Mahlia TMI, Ong HC,Chia WY, Show PL (2021) Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 416: 125912. doi: 10.1016/j.jhazmat.2021.125912. 9. Rezvani F, Sarrafzadeh MH, Ebrahimi S, Oh HM (2019) Nitrate removal from drinking water with a focus on biological methods: a review,” Environ. Sci. Pollut. Res. 26(2): 1124–1141.doi: 10.1007/s11356- 017-9185-0. 10. Ahmed SF, Mofijur M, Parisa TA, Islam N, Kusumo F, Inayat A, Le VG, Badruddin IA, Yunus Khan TM, Ong HC (2022) Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere , 286(P1): 131656. doi: 10.1016/j.chemosphere.2021.131656. 11. Dayana Priyadharshini S, Suresh Babu P, Manikandan S, Subbaiya R, Govarthanan M, Karmegam N (2021) Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. Environ. Pollut. 290:117989. doi: 10.10 16/j.envpol.2021.117989. 12. Barbusi ń ski K, Parzentna-Gabor A, Kasperczyk D(2021) Removal of Odors (Mainly H2S and NH3) Using Biological Treatment Methods,” Clean Technol. 3(1):138–155. doi: 10.3390/cleantechnol30 10009. 13. Liang F, Xiao Y, Zhao F (2013) Effect of pH on sulfate removal from wastewater using a bioelectrochemical system,” Chem. Eng. J. , 218: 147–153. doi: 10.1016/j.cej.2012.12.021. 14. Trapido M, Tenno T, Goi A, Dulova N, Kattel E, Klauson D, Klein K, Tenno T, Viisimaa M (2017) Bio- recalcitrant pollutants removal from wastewater with combination of the Fenton treatment and biological oxidation. J. Water Process Eng. , 16: 277–282. doi: 10.1016/j.jwpe.2017.02.007. 15. Liu J, Ou HS, Wei CH, Wu HZ, He JZ, Lu DH (2016) Novel multistep physical/chemical and biological integrated system for coking wastewater treatment: Technical and economic feasibility,” J. Water Process Eng. , 10: 98–103. doi: 10.1016/j.jwpe. 2016.02.007. 16. Sarode S, Upadhyay P, Khosa MA, Mak T, Shakir A, Song S, Ullah A (2019) Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan,” Int. J. Biol. Macromol. , 121: 1086– 1100. doi: 10.1016/j.ijbiomac.2018.10.089. 17. Costa PM, Neuparth TS, Caeiro S, Lobo J, Martins M, Ferreira AM, Caetano M, Vale C, DelValls TA, Costa MH (2011) Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: Laboratory versus in situ studies,” Environ. Res. , 111(1): 25–36. doi: 10.1016/ j.envres.2010.09.011. 18. Tong T and Elimelech M (2016) The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. , 50(13):6846–6855. doi:10. 1021/acs.est.6b01000. 19. Almuktar SAN, Abed SN, Scholz M (2018) Wetlands for wastewater treatment and subsequent recycling of treated effluent: a review,” Environ. Sci. Pollut. Res. , 25(24): 23595–23623. doi: 10.1007/s11356- 018-2629-3. 20. Kehrein P, Van Loosdrecht M, Osseweijer P, Garfí M, Dewulf J, Posada J (2020) A critical review of resource recovery from municipal wastewater treatment plants-market supply potentials, technologies and bottlenecks. Environ. Sci. Water Res. Technol. , 6(4): 877–910. doi: 10.1039/ c9ew00905a. 21. Senthil Kumar P and Saravanan A (2017) Sustainable wastewater treatments in textile sector . Elsevier Ltd. doi: 10.1016/B978-0-08-102041-8.00011-1. 22. Ashraf A, Ramamurthy R, Rene ER (2021) Wastewater treatment and resource recovery technologies in the brewery industry: Current trends and emerging practices,” Sustain. Energy Technol. Assessments . 47: 101432. doi: 10.1016/j.seta.2021. 101432. 23. F. Kanzari F,Syakti AD, Asia L, Malleret L, Piram A, Mille G, Doumenq P (2014) Distributions and sources of persistent organic pollutants (aliphatic hydrocarbons, PAHs, PCBs and pesticides) in surface sediments of an industrialized urban river (Huveaune), France. Sci. Total Environ. , 478:141– 151. doi: 10.1016/j.scitotenv.2014.01.065. 24. Venier M, Salamova A, Hites RA (2019) How to distinguish urban vs. agricultural sources of persistent organic pollutants? Curr. Opin. Environ. Sci. Heal. , 8: 23–28. doi: 10.1016/j.coesh.2019. 01.005. 25. Pan EC,Sun H, Xu QJ, Zhang Q, Liu LF, Chen XD, Xu Y (2015) Polycyclic Aromatic Hydrocarbons Concentrations in Drinking Water in Villages along the Huai River in China and Their Association with High Cancer Incidence in Local Population. Biomed Res. Int. , 2015: 1–11. doi: 10.1155/2015/762832. 26. Abdel-Shafy HI and Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25(1): 107–123. doi: 10.1016/j.ejpe.2015.03.011. 27. Johnson AC, Keller V, Dumont E, Sumpter JP (2015) Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European © 2023 Global Journals 1 Year 2023 44 Global Journal of Science Frontier Research Volume XXIII Issue ersion I VII ( H ) An Overview on Engineering Bio-Treatment Methods for Effluent in Food Processing Industries
RkJQdWJsaXNoZXIy NTg4NDg=