Global Journal of Science Frontier Research, H: Environment & Earth Science, Volume 23 Issue 2

Portuguese coast. Mar. Pollut. Bull. , 60(11):1988– 1992. doi: 10.1016/j.marpolbul.2010.07.030. 49. Taniguchi S, Colabuono F, Dias PS, Oliveira R, Fisner M, Turra A, Izar GM, Abessa DMS,Saha M, Hosoda J, Yamashita R, Takada H, Lourenço RA, Magalhães CA, Bícego MC, Montone RC(2016) Spatial variability in persistent organic pollutants and polycyclic aromatic hydrocarbons found in beach-stranded pellets along the coast of the state of São Paulo, southeastern Brazil. Mar. Pollut. Bull. , 106(1–2): 87–94. doi: 10.1016/j.marpolbul.2016.03. 024. 50. Campanale C, Dierkes G, Massarelli C, Bagnuolo G, Uricchio VF (2020) A Relevant Screening of Organic Contaminants Present on Freshwater and Pre- Production Microplastics. Toxics . 8(100):1–21. doi: 10.3390/toxics8040100. 51. Weldeslassie T, Naz H, Singh B (2017) Chemical Contaminants for Soil, Air and Aquatic Ecosystem . doi: 10.1007/978-3-319-64501-8. 52. Kenneth EO and Modestus EOF,Ofodum N(2019) Impact of Abattoir Wastes on Groundwater Quality in the Fct, Abuja-Nigeria: A Case Study of Gwagwalada Satellite Town. J. Environ. Earth Sci. (c):1–16. doi: 10.7176/jees/9-4-12. 53. Osibanjo GU, and Adie O (2007) Impact of effluent from Bodija abattoir on the physico- chemical parameters of Oshunkaye stream in Ibadan. African J. Biotechnol. , 6(15): 1806–1811. 54. Husam AN and Nassar A (2019) Slaughterhouses Wastewater Characteristics in the Gaza Strip. J. Water Resour. Prot. 11(07): 844–851. doi:10.4236/ jwarp.2019.117051. 55. Auma EO (2020) Anaerobic Co-Digestion of Water Hyacinth ( Eichhornia crassipes ) with Ruminal Slaughterhouse Waste under Mesophilic Conditions. PhD thesis, Univ. Nairobi . 1–134. 56. Balogun MA, Anumah AO, Adegoke KA, Maxakato NW (2022) Environmental health impacts and controlling measures of anthropogenic activities on groundwater quality in Southwestern Nigeria . 194(5): doi: 10.1007/s10661-022-09805-z. 57. Tesseme AT, Vinti G, Vaccari M (2022) Pollution potential of dumping sites on surface water quality in Ethiopia using leachate and comprehensive pollution indices. Environ. Monit. Assess. 194(8):1– 24. doi: 10.1007/s10661-022-10217-2. 58. Yaakob MA, Mohamed RMSR, Al-Gheethi AAS, Kassim AHM (2018) Characteristics of chicken slaughterhouse wastewater. Chem. Eng. Trans. 63: 637–642. doi: 10.3303/CET1863107. 59. Asibor G, Edjere O, Azubuike C (2020) Status of discharged abattoir effluent and its effects on the physico-chemical characteristics of orogodo river, delta state, nigeria. WIT Trans. Ecol. Environ. 242(15): 51–60. doi:10.2495/WP200051. 60. Fathima AA, Sanitha M, Tripathi L, Muiruri S (2022) Cassava (Manihot esculenta) dual use for food and bioenergy: A review. Food Energy Secur. 1–26. doi: 10.1002/fes3.380. 61. Amelework AB and Bairu MW (2022) Advances in Genetic Analysis and Breeding of Cassava (Manihot esculenta Crantz): A Review. Plants . 11(12): 1–19. doi: 10.3390/plants11121617. 62. Dike KS, OkaforCP, OhabughiroBN, Maduwuba MC, EzeokoliOT, AyeniKI, OkaforCM, EzekielCN (2022) Analysis of bacterial communities of three cassava-based traditionally fermented Nigerian foods (abacha, fufu and garri). Lett. Appl. Microbiol. 74(3): 452–461. doi: 10.1111/lam.13621. 63. Abass AB,AwoyaleW , OgundapoA, OluwasogaO, NwaoliweG, Oyelekan J, OlarindeLO (2022) Adoption of improved cassava varieties by processors is linked to processing characteristics and products biophysical attributes. J. Food Process. Preserv. 46(3):1–19. doi: 10.1111/jfpp. 16350. 64. Obafemi YD, Oranusi SU, Ajanaku KO, Akinduti PA, Leech J, Cotter PD (2022) African fermented foods: overview, emerging benefits, and novel approaches to microbiome profiling. npj Sci. Food , 6(1): 1–9. doi:10.1038/s41538-022-00130-w. 65. Polar V, Teeken B, Mwende J, Marimo P, Tufan HA, Ashby JA, Cole S, Mayanja S, Okello JJ, Kulakow P, Thiele G (2019) T ransferring Cassava Processing Technology from Brazil to Africa . doi: 10.1007/978-3- 030-92022-7_16. 66. Airaodion AI, Airaodion EO, Ewa O, Ogbuagu EO, Ogbuagu U (2019) Nutritional and Anti–Nutritional Evaluation of Garri Processed by Traditional and Instant Mechanical Methods. Asian Food Sci. J. 1– 13. doi: 10.9734/afsj/2019/v9i430021. 67. Nnaji CC and Akanno CC (2022) Assessment of Environmental Degradation due to Processing of Cassava into Garri Flakes Using Pollution Indices. Environ. Process. 9(3):1–17. doi: 10.1007/s40710- 022-00594-8. 68. Quinn AA, Myrans H, Gleadow RM (2022) Cyanide Content of Cassava Food Products Available in Australia. Foods . 11(10): 1–7. doi: 10.3390/foods11 101384. 69. Ogunyemi AK, AbayomiAA , OpawaleRO, SamuelTA, IloriMO, AmundOO, AloBI (2022) Alkaline-extracted cyanide from cassava wastewater and its sole induction of chromosomal aberrations in Allium cepa L. root tips. Environ. Technol. (United Kingdom) . 43(20):3097–3106. doi:10.1080/095933 30.2021.1916088. 70. Nizzy AM and Kannan S (2022) A review on the conversion of cassava wastes into value-added products towards a sustainable environment. © 2023 Global Journals 1 Year 2023 46 Global Journal of Science Frontier Research Volume XXIII Issue ersion I VII ( H ) An Overview on Engineering Bio-Treatment Methods for Effluent in Food Processing Industries

RkJQdWJsaXNoZXIy NTg4NDg=