Global Journal of Science Frontier Research, H: Environment & Earth Science, Volume 23 Issue 2

Gases for Agriculture and Biomedicine. Appl. Sci. , 12(9): 1–30, 2022, doi: 10.3390/app12094405. 94. Preis S, Klauson D, Gregor A (2013) Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. J. Environ. Manage. , 114: 125–138, doi: 10.1016/j.jenvman.2012.10.042. 95. Suresh R, Rajoo B, Chenniappan M, Palanichamy M (2018) Treatment possibilities of electrical discharge non-thermal plasma for industrial wastewater treatmentreview. IOP Conf. Ser. Mater. Sci. Eng. , 1055(1): 012018. doi:10.1088/1757-899x/1055/1/01 2018. 96. Rabasovic MS, Marinkovic BP, Sevic D (2022) Time resolved study of laser triggered electric discharge spark in atmosphere: Machine learning approach. Adv. Sp. Res. , xxx(xxxx): 1–7. doi: 10.1016 /j.asr.20 22.04.046. 97. Vishnyakov VI (2022) Pulsed high-voltage electrical discharges in water: The resource for hydrogen production and water purification. Int. J. Hydrogen Energy , 47(25):12500–12505. doi:10.1016/j.ijhyde ne.2022.02.015. 98. Ivanov M, Pavičić TV, Kraljić K, Grgas D, Dragičević TL, Herceg Z (2021) Effects of high voltage electrical discharge plasma on olive mill wastewater treatment. Sustain. 13(3):1–12. doi: 10.3390/ su130 31552. 99. Ishfaq K, Arif M, Raza A, Mudassar K (2022) Mathematical modelling with experimental correlation for multiple craters dimension, material removal rate and surface roughness in electrical discharge machining,” Int. J. Adv. Manuf. Technol. , 120: 227–236. doi: 10.1007/s00170-021-08582-2. 100. Mantach S, Lutfi A, Tavasani HM, Ashraf A, El-Hag A, Kordi B (2022) Deep Learning in High Voltage Engineering: A Literature Review. Energies , 15(14):1–32. doi: 10.3390/en15145005. 101. Ming W, Zhang S, Zhang G, Du J, Ma J, He W, Cao C, Liu K(2022) Progress in modeling of electrical discharge machining process,” Int. J. Heat Mass Transf. , 187:1–32. doi: 10.1016/j.ijheatmasstransfer. 2022.122563. 102. Lou J, Lu G, Wei Y, Zhang Y, An J, Jia M, Li M (2022) Enhanced degradation of residual potassium ethyl xanthate in mineral separation wastewater by dielectric barrier discharge plasma and peroxymo- nosulfate. Sep. Purif. Technol. , 282(PA):119955. doi: 10.1016/j.seppur.2021.119955. 103. Konchekov EM, Kolik LV, Danilejko YK, Belov SV, Artem’ev KV, Astashev ME, Pavlik TI, Lukanin VI, Kutyrev AI, Smirnov IG, Gudkov SV(2022) Enhancement of the Plant Grafting Technique with Dielectric Barrier Discharge Cold Atmospheric Plasma and Plasma-Treated Solution. Plants , 11(10): 1373. doi:10.3390/plants11101373. 104. Chiozzi V and Agriopoulou S (2022) Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. Appl. Sci. , 12: 1– 40. 105. Sahoo M, Panigrahi C, Aradwad P (2022) Management strategies emphasizing advanced food processing approaches to mitigate food borne zoonotic pathogens in food system. Food Front.: 1– 25. doi: 10.1002/fft2.153. 106. Bland R, Brown SRB, Kovacevic J (2021) Probing antimicrobial resistance and sanitizer tolerance themes and their implications for the food industry through the Listeria monocytogenes lens. Compr. Rev. Food Sci. Food Saf. , 21: 1777–1802. doi: 0.11 11/1541-4337.12910. 107. Ansari A, Parmar K, Shah M (2022) A comprehensive study on decontamination of food- borne microorganisms by cold plasma. Food Chem. Mol. Sci. , 4:100098. doi: 10.1016/j.fochms.2022. 100098. 108. Carrascosa C,Raheem D, Ramos F, Saraiva A, Raposo A (2021) Microbial biofilms in the food industry—a comprehensive review,” Int. J. Environ. Res. Public Health , 18(4):1–31. doi: 10.3390/ijerph1 8042014. 109. Mechmechani S, Khelissa S, Gharsallaoui A, El Omari K, Hamze M, Chihib NE (2022) Hurdle technology using encapsulated enzymes and essential oils to fight bacterial biofilms. Appl. Microbiol. Biotechnol. , 106(7): 2311–2335. doi: 10.1007/s00253-022-11875-5. 110. Premjit Y, Sruthi NU, Pandiselvam R, Kothakota A (2022) Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Compr. Rev. Food Sci. Food Saf. , 21(2):1054–1085. doi: 10.1111/1541-4337.12886. 111. Bailone RL, Borra RC, Fukushima HCS, Aguiar LK(2022) Water reuse in the food industry,” Discov. Food , 2(1):1–17. doi:10.1007/s44187-021-00002-4. 112. Aslam R, Alam MS, Kaur P (2021) Comparative Study on Efficacy of Sanitizing Potential of Aqueous Ozone and Chlorine on Keeping Quality and Shelf- life of Minimally Processed Onion ( Allium Cepa L.) Comparative Study on Efficacy of Sanitizing Potential of Aqueous Ozone and Chlorine on Ke. Ozone Sci. Eng. , 00(00):1–12. doi:10.1080/019 19512.2021.1904204. 113. Epelle EI, Macfarlane A, Cusack M, Burns A, Thissera B, Mackay W, Rateb ME, Yaseen M (2022) Bacterial and fungal disinfection via ozonation in air. J. Microbiol. Methods , 194: 106431. doi:10.10 16/j.mimet.2022.106431. © 2023 Global Journals 1 Year 2023 48 Global Journal of Science Frontier Research Volume XXIII Issue ersion I VII ( H ) An Overview on Engineering Bio-Treatment Methods for Effluent in Food Processing Industries

RkJQdWJsaXNoZXIy NTg4NDg=