Global Journal of Science Frontier Research, H: Environment & Earth Science, Volume 23 Issue 2

Nature-based solutions coupled with advanced technologies: An opportunity for decentralized water reuse in cities. J. Clean. Prod. , 340: 130660. doi: 10.1016/j.jclepro.2022.130660. 155. Zhang M, Xie L, Wang Z, Lu X, Zhou Q (2018) Using Fe(III)-coagulant-modified colloidal gas aphrons to remove bio-recalcitrant dissolved organic matter and colorants from cassava distillery wastewater. Bioresour. Technol. , Iii:1–35. doi:10.1016/j.biortech. 2018.08.010. 156. Fouad K, Bassyouni M, Alalm MG, Saleh MY (2021) Recent developments in recalcitrant organic pollutants degradation using immobilized photocatalysts White Portland cement. Appl. Phys. A , 127(8):1–28. doi: 10.1007/s00339-021-04724-1. 157. Ra R, Sulonen M, Mahmoud M, El-gohary F, Avignone C(2022) Integration of microbial electrochemical systems and photocatalysis for sustainable treatment of organic recalcitrant wastewaters: Main mechanisms, recent advances , and present prospects. Sci. Total Environ. J. , 824: 153923. doi:10.1016/j.scitotenv.2022.153923. 158. Hassan SPM, Pous N, Xie B, Colprim J, Balaguer MD (2017) Employing Microbial Eelectrochemical Technology-driven electro-Fenton oxidation for the removal of recalcitrant organics from sanitary landfill leachate. Bioresour. Technol. : 1–31. doi:10.1016/j. biortech.2017.07.042. 159. Zhang H, Liu Z, Li Y, Zhang C, Wang Y (2019) Intimately coupled TiO2/g-C3N4 photocatalysts and in-situ cultivated biofilms enhanced nitrate reduction in water. Appl. Surf. Sci. :1–40. doi:10.1016/j. apsusc.2019.144092. 160. Ghosh S, Kulsoom U, Chowdhury R, Bhattacharya P (2016) Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria ( PNSB ) – A review. Energy Convers. Manag. , xxx: 1–16., doi: 10.1016/j.enconman.2016.09.001. 161. Basak N, Kumar A, Das D, Saikia D (2014) Photofermentative molecular biohydrogen production by purple-non-sulfur ( PNS ) bacteria in various modes: The present progress and future perspective. Int. J. Hydrogen Energy , 2104: 1–19. doi: 10.1016/j.ijhydene.2014.02.093. 162. M. Sakarika M, Spanoghe J, Sui Y, Wambacq E, Grunert O, Haesaert G, Spiller M, Vlaeminck SF (2020) Purple non-sulphur bacteria and plant production: bene fits for fertilization, stress resistance and the environment. Microb. Biotechnol. , 13(5):1336–1365. doi: 10.1111/1751- 7915.13474. 163. G. Policastro, M. Giugliano, V. Luongo, R. Napolitano, and M. Fabbricino, “Enhancing photo fermentative hydrogen production using ethanol rich dark fermentation effluents,” Int. J. Hydrogen Energy , vol. 47, no. 1, pp. 117–126, 2021, doi: 10.1016/j.ijhydene.2021.10.028. 164. Saha R, Bhattacharya D, Mukhopadhyay M (2022) Energy Conversion and Management : X Enhanced production of biohydrogen from lignocellulosic feedstocks using microorganisms: A comprehensive review. Energy Convers. Manag. X , 13: 100153. doi: 10.1016/j.ecmx.2021.100153. 165. Chai Y, Lyu Z, Du H, Li P (2022) Recent progress on rational design of catalysts for fermentative hydrogen production. Susmat , 2: 392–410. doi: 10.1002/sus2.75. 166. Cao W, Wei X, Jiang Y, Feng J, Gao Z, Tang C (2022) Furfural Influences Hydrogen Evolution and Energy Conversion in Photo-Fermentation by Rhodobacter capsulatus,” Catalysts , 12(979): 1–12. https://doi.org/10.3390/ catal12090979 167. Bosman CE, William R, Pott M, Bradshaw SM (2022) A Thermosiphon Photobioreactor for Photofer- mentative Hydrogen Production by Rhodopseu- domonas palustris. bioengineering , 9(344):1–16. https://doi.org/10.3390/bioengineering9080344 168. Bhanot P, Celin SM, Sreekrishnan TR, Kalsi A, Sahai SK (2020) Application of integrated treatment strategies for explosive industry wastewater—A critical review. J. Water Process Eng. , 35: 101232. doi:10.1016/j.jwpe.2020.101232. 169. Asgharnejad H (2021) Comprehensive review of water management and wastewater treatment in food processing industries in the framework of water-food-environment nexus. COMPREH ENSIVE Rev. FOOD Sci. FOOD Saf. ,: 1–37, 2021, doi: 10.1111/1541-4337.12782. 170. Alemu T, Mekonnen A, Leta S (2017) Integrated tannery wastewater treatment for e ffl uent reuse for irrigation : Encouraging water e ffi ciency and sustainable development in developing countries. J. Water Process Eng. , xxx: 1–8. doi: 10.1016/j.jwpe. 2017.10.014. 171. Ferreira LO and Passos F (2021) Anaerobic co- digestion of food waste and microalgae in an integrated treatment plant. J Chem Technol Biotechnol ,. 1–10. doi:10.1002/jctb.6900. 172. Saravanan A, Kumar PS, Rangasamy G, Hariharan R, Hemavathy RV, Deepika PD, Anand K, Karthika S (2023)Chemosphere Strategies for enhancing the efficacy of anaerobic digestion of food industry wastewater: An insight into bioreactor types , challenges, and future scope. Chemosphere , 310:136856. doi: 10.1016/j.chemosphere.2022.136 856. 173. Bu F, Hu X, Xie L, Zhou Q (2015) Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal. Biomed. Biotechnol. , 16(4):304–316. doi: 10.1631/ jzus.B1400106. 1 Year 2023 5 © 2023 Global Journals Global Journal of Science Frontier Research Volume XXIII Issue ersion I VII ( H ) An Overview on Engineering Bio-Treatment Methods for Effluent in Food Processing Industries

RkJQdWJsaXNoZXIy NTg4NDg=