Global Journal of Science Frontier Research, H: Environment & Earth Science, Volume 23 Issue 2
174. Tonga MZS, Wang S, Zhao Y, Feng C, Xu B (2018) Enhanced alure-type biological system (E-ATBS) for carbon, nitrogen and phosphorus removal from slaughterhouse wastewater: A case study,” Bioresour. Technol. , PII: 1–36. doi:10.1016/j. biortech.2018.11.094. 175. Tawfik A & El-Kamah H (2012) Treatment of fruit- juice industry wastewater in a two- stage anaerobic hybrid (AH) reactor system followed by a sequencing batch reactor (SBR ). Environ. Technol. (United Kingdom) , 33(4): 429–436. doi:10.1080/ 09593330.2011.579178. 176. Manyuchi MM, Mbohwa C, Muzenda E (2018) South African Journal of Chemical Engineering Anaerobic treatment of opaque beer wastewater with enhanced biogas recovery through Acti-zyme bio augmentation. South African J. Chem. Eng. , 26: 74– 79. doi: 10.1016/j.sajce.2018.10.002. 177. Lim YF, Chan YJ, Hue FS, Ng SC, Hashma H (2021) Anaerobic co-digestion of Palm Oil Mill Effluent ( POME ) with Decanter cake ( DC ): Effect of mixing ratio and kinetic study. Bioresource Technology Reports . https://doi.org/10.1016/j.biteb.2021.100736 178. Oluwole AO, Omotola EO, Olatunji OS (2020) Pharmaceuticals and personal care products in water and wastewater: a review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation. BMC Chem. , 14(1): 1–29. doi: 10.1186/s13065-020- 00714-1. 179. Hossain K, Maruthi YA, Das NL, Rawat KP, Sarma KSS (2018) Irradiation of wastewater with electron beam is a key to sustainable smart/green cities: a review. Appl. Water Sci. , 8(1): 1–11. doi: 10.1007/ s13201-018-0645-6. 180. Roque J, Santos P, Margaça FMA, Filomena M, Sandra C, Verde C (2022) Inactivation mechanisms of human adenovirus by e ‑ beam irradiation in water environments. Appl. Microbiol. Biotechnol. , 106:3799–3809. doi: 10.1007/s00253-022-11958-3. 181. Madureira J, Melo R, Pimenta AI, Verde SC, Sueli I (2018) Evaluation of e-beam irradiation effects on the toxicity of slaughterhouse wastewaters,” Environ. Technol. , 39(7):873–877; doi: 10.1080/09593330.20 17.1313887. 182. Madureira J, Severino A, Cojocaru M, Garofalide S, Santos PMP, Carolino MM (2019) E-beam treatment to guarantee the safety and quality of cherry tomatoes. Innov. Food Sci. Emerg. Technol. , 55:57– 65. doi: 10.1016/j.ifset.2019.05.013. 183. R. C. Dhuley RC, Gonin I, Kazakov S, Khabiboulline T, Sukhanov A, Yakovlev V, Saini A, Solyak N, Sauers A, Thangaraj JCT, Zeller K, Coriton B (2022)Design of a 10 MeV , 1000 kW average power electron-beam accelerator for wastewater treatment 41601.doi:10.1103/PhysRevAccelBeams.25.041601. 184. Changotra R, Rajput H, Paul J, Abdul S, Dhir A (2020) Techno-economical evaluation of coupling ionizing radiation and biological treatment process for the remediation of real pharmaceutical wastewater. J. Clean. Prod. , 242: 118544. doi: 10.1016/j.jclepro.2019.118544. 185. Jebri S, Yahya M, Rahmani F, Amri I, Hamdi M, Hmaied F (2022) Inactivation of biohazards in healthcare wastewater by E ‑ Beam and Gamma irradiation: a comparative study. Environ. Sci. Pollut. Res. , 29: 75575–75586. doi: 10.1007/s11356-022- 21159-0. 186. Subramanian B (2012) Optimization of Integrated Electro-Bio Process for Bleaching Effluent Treatment Related papers. Ind. Eng. Chem. Res. , 51: 8211– 8221. 187. Choi J, Maruthamuthu S, Lee H, Ha T, Bae J (2009) Nitrate removal by electro-bioremediation technology in Korean soil. J. Hazard. Mater. , 168(3): 1208–1216. doi: 10.1016/j.jhazmat.2009.02.162. 188. Annamalai S and Sundaram M (2020) Electro- bioremediation: An Advanced Remediation Technology for the Treatment and Management of Contaminated Soil .: https://doi.org/10.1007/978- 981-13-3426-9_8 189. Jadhav DA, Ghosh Ray S, Ghangrekar MM (2017) Third generation in bio-electrochemical system research– A systematic review on mechanisms for recovery of valuable by-products from wastewater. Renew. Sustain. Energy Rev. , 76: 1022–1031. doi: 10.1016/j.rser.2017.03.096. 190. Din MI, Nabi AG, Hussain Z, Khalid R, Iqbal M, Arshad M, Mujahid A, Hussain T (2021) Institute Microbial fuel cells—A preferred technology to prevail energy crisis. Int. J. Energy Res. , 45(6): 8370–8388, 2021, doi: 10.1002/er.6403. 191. Khan S and Fu P (2020) Biotechnological perspectives on algae: a viable option for next generation biofuels. Curr. Opin. Biotechnol. , 62: 146–152. doi: 10.1016/j.copbio.2019.09.020. 192. Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM (2021) Biomass utilization and production of biofuels from carbon neutral materials. Environ. Pollut. , 276: 116731. doi: 10.1016/j.envpol.2021.116731. 193. Sharma S and Simsek H (2019) Treatment of canola-oil refinery effluent using electrochemical methods: A comparison between combined electrocoagulation+electrooxidation and electro- chemical peroxidation methods. Chemosphere . 221: 630–639. doi: 10.1016/j.chemosphere.20 19.01.066. 194. Garcia-Segura S, Eiband MMSG, de Melo JV, Martínez-Huitle CA (2017) Electrocoagulation and applications. Phys. Rev. Accel. Beams , 25(4): © 2023 Global Journals 1 Year 2023 52 Global Journal of Science Frontier Research Volume XXIII Issue ersion I VII ( H ) An Overview on Engineering Bio-Treatment Methods for Effluent in Food Processing Industries
RkJQdWJsaXNoZXIy NTg4NDg=