Global Journal of Science Frontier Research, H: Environment & Earth Science, Volume 23 Issue 2
review about the fundamentals, emerging applications and its association with other technologies. J. Electroanal. Chem. 801: 267–299. doi:10.1016/j.jelechem.2017.07.047. 195. Behera M, Nayak J, Banerjee S, Chakrabortty S, Tripathy SK (2021) A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach. J. Environ. Chem. Eng. , 9(4):105277.doi: 10.1016/j.jece.20 21.105277. 196. Wirtanen G, Husmark U, Mattila-Sandholm T (1996) Microbial evaluation of the biotransfer potential from surfaces with Bacillus biofilms after rinsing and cleaning procedures in closed food- processing systems. J. Food Prot. , 59(7):727–733. doi: 10.4315/0362-028X-59.7.727. 197. Banerjee A,Breig SJM, Gómez A, Sánchez-Arévalo I,González-Faune P, Sarkar S, Bandopadhyay R, Vuree S, Cornejo J, Tapia J, Bravo G, Cabrera- Barjas G (2022) Optimization and Characterization of a Novel Exopolysaccharide from Bacillus haynesii CamB6 for Food Applications. Biomolecules , 12(6): 1–26. doi: 10.3390/biom12060834. 198. Gayathiri E, Prakash P, Karmegam N, Varjani S, Awasthi MK, Ravindran B (2022) Biosurfactants: Potential and Eco-Friendly Material for Sustainable Agriculture and Environmental Safety—A Review. Agronomy , 12(3): 1–35. doi: 10.3390/agronomy 12030662. 199. Pham VHT, Kim J, Shim J, Chang S, Chung W (2022) Coconut Mesocarp-Based Lignocellulosic Waste as a Substrate for Cellulase Production from High Promising Multienzyme-Producing Bacillus amyloliquefaciens FW2 without Pretreatments. Microorganisms , 10(2):1–16. doi: 10.3390/microo rganisms10020327. 200. Zhang B, Xu L, Ding J, Wang M, Ge R, Zhao H, Zhang B, Fan J (2022) Natural antimicrobial lipopeptides secreted by Bacillus spp . and their application in food preservation , a critical review. Trends Food Sci. Technol. , 127(2015): 26–37. doi: 10.1016/j.tifs.2022.06.009. 201. Leneveu-Jenvrin C, Charles F, Barba FJ, Remize F (2020) Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables. Crit. Rev. Food Sci. Nutr. , 60(17): 2837–2855. doi: 10.1080/10408398.2019.1664979. 202. Abuhena M,Al ‑ Rashid1 J, Azim1 MF, Khan MNM, Kabir MG, Barman NC, Rasul NM, Akter S, Amdadul HuqM (2022)Optimization of industrial (3000 L) production of Bacillus subtilis CW-S and its novel application for minituber and industrial-grade potato cultivation. Sci. Rep. , 12(1): 1–19. 2022, doi: 10.1038/s41598-022-15366-5. 203. Alkindi KM, Mukherjee K, Pandey M, Arora A, Janizadeh S, Pham QB, Anh DT, Ahmadi K (2022) “Prediction of groundwater nitrate concentration in a semiarid region using hybrid Bayesian artificial intelligence approaches. Environ. Sci. Pollut. Res. , 29(14): 20421–20436. doi: 10.1007/s11356-021- 17224-9. 204. Mahapatra S, Yadav R, Ramakrishna W (2022) Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J. Appl. Microbiol. , 132(5):3543–3562. doi: 10.1111/jam. 15480. 205. Hong S, Kim TY, Won S, Moon J, Ajuna HB, Kim KY, Ahn YS (2022) Control of Fungal Diseases and Fruit Yield Improvement of Strawberry Using Bacillus velezensis CE 100. Microorganisms . 10(2): 1–15. doi: 10.3390/microorganisms10020365. 206. Deng J, Jia M, Zeng YQ, Li W, He J, Ren J, Bai J, Zhang L, Li J, Yang S (2022) Enhanced treatment of organic matter in slaughter wastewater through live Bacillus velezensis strain using nano zinc oxide microsphere. Environ. Pollut. , 292(PA): 118306. doi: 10.1016/j.envpol.2021.118306. 207. Ciurko D, Czy ż nikowska Z, Kancelista A, Łaba W, Janek T (2022) Sustainable Production of Biosurfactant from Agro-Industrial Oil Wastes by Bacillus subtilis and Its Potential Application as Antioxidant and ACE Inhibitor. Int. J. Mol. Sci. , 23(18): 1–19. doi: 10.3390/ijms231810824. 208. Mahunon SER, Aina MP,Akowanou AVO, Kouassi EK, Yao BK, Adouby K, Drogui P (2018) Optimization process of organic matter removal from wastewater by using Eichhornia crassipes. Environ. Sci. Pollut. Res. , 25(29):29219–29226. doi: 10.1007/s11356-018-2771-y. 209. Darajeh N, Truong P, Rezania S, Alizadeh H, Leung DWM (2019) Effectiveness of vetiver grass versus other plants for phytoremediation of contaminated water. J. Environ. Treat. Tech. , 7(3): 485–500. 210. Otari SV and Jadhav JP (2021) Seaweed-Based Biodegradable Biopolymers, Composite, and Blends with Applications . doi: 10.1007/978-981-33-6552- 0_6. 211. Demarco CF, Quadro MS, Carlos FS, Pieniz S, Morselli LBGA, Andreazza R (2023) Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives. Sustainability , 15(2):1411. doi: 10.3390/su15021411. 212. Capita R and Alonso-Calleja C (2013) Antibiotic- Resistant Bacteria: A Challenge for the Food Industry. Crit. Rev. Food Sci. Nutr. , 53(1):11–48. doi: 10.1080/10408398.2010.519837. 213. Korzeniewska E and Harnisz M (2018) Relationship between modification of activated sludge wastewater treatment and changes in antibiotic advanced electrocoagulation processes: A general 1 Year 2023 53 © 2023 Global Journals Global Journal of Science Frontier Research Volume XXIII Issue ersion I VII ( H ) An Overview on Engineering Bio-Treatment Methods for Effluent in Food Processing Industries
RkJQdWJsaXNoZXIy NTg4NDg=